

Détection de polluants atmosphériques par imagerie hyperspectrale infrarouge : étude du cas de polluants gazeux en zone industrielle à haute résolution spatiale

Ramzi IDOUGHI, Pierre-Yves FOUCHER, Laurent POUTIER, Véronique ACHARD, Xavier BRIOTTET

retour sur innovation

- Contexte de l'étude
- Détection des gaz et aérosols (état de l'art)
- **Principe du Couplage Hyperspectral / Lidar**
- Validation des outils de simulations
- **Construction d'une scène 3D polluée**
- Conclusion

Contexte de l'étude

Détection des gaz et aérosols (état de l'art)

- **Principe du Couplage Hyperspectral / Lidar**
- Validation des outils de simulations
- **Construction d'une scène 3D polluée**
- Conclusion

Thèse (nov. 2011 – oct. 2012) : Caractérisation des polluants atmosphériques par imagerie hyperspectrale aéroportée à haute résolution spatiale.
Encadrée par : Pierre-Yves FOUCHER
Dirigée par : Xavier BRIOTTET

Projet SEPIA : Couplage de l'imagerie hyperspectrale avec des mesures Lidar pour la caractérisation de polluants atmosphériques d'origines industrielle et anthropique.

Contexte de l'étude

Détection des gaz et aérosols (état de l'art) Principe du Couplage Hyperspectral / Lidar Validation des outils de simulations Construction d'une scène 3D polluée Conclusion

Principe de détection des gaz et aérosols par imagerie hyperspectrale

Détection des gaz et aérosols

Gaz

- Détection : domaine IR
- Majorité des gaz détectables : (CO₂, SO₂, CH₄, NH₃, COV,...)
- ➢ Quantité détectable : T_{nuage}, ∫pdz

Aérosols

- Détection : Visible + proche IR
- Connaissances à priori sur les propriétés optiques des aérosols nécessaires.
- Quantité détectable : propriétés optiques de quelques familles d'aérosols

- Description 3D du panache
- Inversion multi-gaz
- Evolution spatio-temporelle du panache
- Estimation des flux massiques

Contexte de l'étude

- Détection des gaz et aérosols (état de l'art)
- **Principe du Couplage Hyperspectral / Lidar**
- Validation des outils de simulations
- **Construction d'une scène 3D polluée**
- Conclusion

Couplage Hyperspectral-LIDAR

Imagerie hyperspectrale

Lidar multi-λ

THE FRENCH AEROSPACE LAB

Outils de simulation et de Validation

Données sols :

Base de données ONERA (émissivités pour différents matériaux avec une haute résolution)

Gaz : PNNL/GEISA/HITRAN

Aérosols :

Base de données OPAC / mesures LIDAR (estimation d'indice de réfraction) / compagnes de mesures sur des sites industriels (Flamant et al., données ESCOMPTE)

Code de transfert radiatif :

MATISSE (ONERA) / 4A / MODTRAN

Validation sur des images hyperspectrales aéroportées :

- Images existantes : (Telops, SPIM,...)
- Compagne de mesures SEPIA : ONERA (Lidar + hyperspectrale), mesures in-situ (vérité de terrain)

Contexte de l'étude

- Détection des gaz et aérosols (état de l'art)
- **Principe du Couplage Hyperspectral / Lidar**

Validation des outils de simulations

- **Construction d'une scène 3D polluée**
- Conclusion

Comparaison MODTRAN / 4A

Comparaison réalisée sur des profils identiques pour les deux codes :

- Même découpage en couches atmosphériques,
- Mêmes profils de T, P, concentrations.

Données des simulations :

Bandes spectrales : MWIR (3.2-5µm) et LWIR (8-12.5µm) Altitude Capteur = 3 km émissivité du sol = 0.98 (mer) T(sol) = 295K, P(sol) = 1013.15 mB, ρ_{H2O} (sol) = 10000 ppmv expansion nuage de gaz = 100m-200m

Profils simulations :

REF : gaz atmosphériques (H₂O, N₂, CO₂, O₃) (MWIR + LWIR) **CH₄ et NO₂** : Profil REF + Nuage CH₄/NO₂ (10 ppmv, $\Delta T = 5K$) (MWIR) **NH₃ et SO₂** : Profil REF + Nuage NH₃/SO₂ (10 ppmv, $\Delta T = 5K$) (LWIR)

Différence de « fond » entre MODTRAN et 4A

MWIR

Sources des erreurs

- Différence des interpolations utilisées pour le calcul des concentrations de gaz,
- Différence des méthodes de calcul radiatif : dépendance en température, modèle de bandes, base de données,
- Modélisation du flux solaire en MWIR.

13

Comparaison MODTRAN/4A

Différence des signatures : CH₄, NO₂ (MWIR - nuit)

Signatures CH₄, NO₂

Ecart des signatures CH₄, NO₂ entre MODTRAN et 4A

Différence MODTRAN/4A : 0.073K (CH₄) et 0.061K (NO₂)

Comparaison MODTRAN/4A

Différence des signatures : CH₄, NO₂ (MWIR - jour)

Signatures CH₄, NO₂

Ecart des signatures CH₄, NO₂ entre MODTRAN et 4A

Différence MODTRAN/4A : 0.18K (CH₄) et 0.1K (NO₂)

Comparaison MODTRAN/4A

Différence des signatures : NH₃, SO₂ (LWIR)

Signatures NH₃, SO₂

Ecart des signatures NH₃, SO₂ entre MODTRAN et 4A

Différence MODTRAN/4A : 0.24K (NH₃) et 0.09K (SO₂)

Contexte de l'étude

- Détection des gaz et aérosols (état de l'art)
- **Principe du Couplage Hyperspectral / Lidar**
- Validation des outils de simulations

Construction d'une scène 3D polluée

Conclusion

Création d'une scène 3D polluée

THE FRENCH AEROSPACE LAB

Modélisation ciel clair

Modélisation ciel clair

Comparaison entre une simulation directe (MODTRAN) et recombinaison des différents termes radiatifs calculés séparément

Différences inférieures au bruit instrumental (0.05K)

Calcul des transmittances

Modélisation de la transmittance d'un panache

La transmittance d'un panache dépend de :

- La composition du panache (type de gaz présents)
- La concentration des différents gaz présents
- L'épaisseur du panache

Elle s'exprime ainsi :

$$\begin{aligned} \tau(\lambda) &= \exp(-\alpha(\lambda) \cdot \rho \cdot \Delta l) \\ \tau(\lambda) &= \exp(-\sqrt{\alpha(\lambda)} \cdot \rho \cdot \Delta l) \end{aligned}$$

 $\begin{array}{ll} \mathrm{si} & \alpha(\lambda) \cdot \rho \cdot \Delta l \leq seuil \\ \mathrm{sinon} \end{array}$

- Avec : α : l'absorbance (ppmv⁻¹.m⁻¹)
 - ρ : la concentration (ppmv)
 - ΔI : épaisseur du panache (m)

Intérêt de cette approche

Introduction des sections efficaces provenant des mesures en laboratoire (PNNL)

→ Simulation d'une centaine d'espèce.

Calcul des Luminances montantes

Calcul de l'éclairement descendant

Intérêt de ce calcul

Possibilité de modéliser un panache fini et hétérogène.

Comparaison entre une simulation directe (MODTRAN) et recombinaison des différents termes radiatifs calculés séparément

Différence en température de brillance pour la signature du gaz : 0.08K

Modélisation du panache

Hypothèses sur le panache

- Modèle de dispersion gaussien (concentration + T)
- Simulations stationnaire sur une heure
- **Conditions météo** : vent à 2m/s de nord (angle 0), hauteur de couche limite = 1000m
- La source est à 20 m de hauteur , pour 3 m de diamètre,
- Vitesse d'éjection : 10m/s, la température des gaz de sortie est de 100°C
- Expansion verticale : 460m

Résultats de la scène polluée

Visualisation des spectres en température de brillance

Données du panache : Débit = 30kg.s⁻¹ $\Delta T_{max} = 100$ K

Spectres de plusieurs pixels de l'image

Résultats de la scène polluée

Application d'un filtre SAM (Spectral Angle Mapping)

Données du panache : $Débit = 0.6 \text{ kg.s}^{-1}$ $\Delta T_{max} = 50 K$ 119 ppmv.m **Données du panache :** $Débit = 30 kg.s^{-1}$ $\Delta T_{max} = 100 K$

→ La structure du sol impacte beaucoup le résultat du SAM

ppmv.m

594

Contexte de l'étude

- Détection des gaz et aérosols (état de l'art)
- **Principe du Couplage Hyperspectral / Lidar**
- Validation des outils de simulations
- **Construction d'une scène 3D polluée**

Conclusion

Conclusion

Perspectives

- Génération de scènes polluées avec présence de plusieurs gaz.
- Introduction des aérosols.
- Développement d'outils d'inversion.
- Couplage Lidar
- Validation

Merci pour votre attention...

