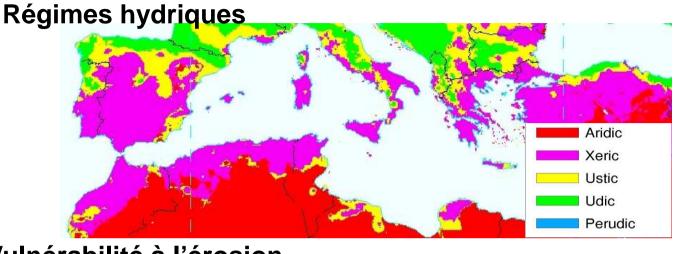


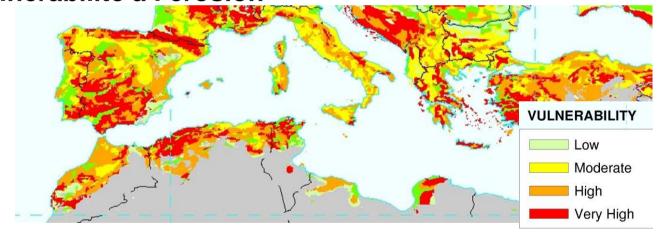
Estimation du taux d'Argile en condition semivégétalisée par traitement d'images Hyperspectrales

Ouerghemmi ¹ W., Gomez ² C., Nacer ¹ S., Lagacherie ³ P.

- ¹ LTSIRS ENIT, Laboratoire de Télédétection et Systèmes d'Information à Référence Spatiale, Tunis, **Tunisie**
- ² IRD UMR LISAH, Laboratoire d'étude des Interactions Sols Agrosystèmes Hydrosystèmes, Montpellier, France
- ³ INRA UMR LISAH, Laboratoire d'étude des Interactions Sols Agrosystèmes Hydrosystèmes, Montpellier, France

Vers des cartes mondiales de propriétés fonctionnelles des sols

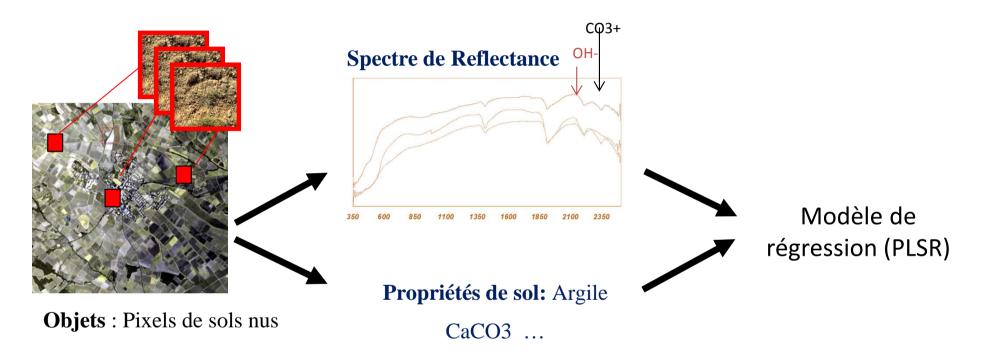




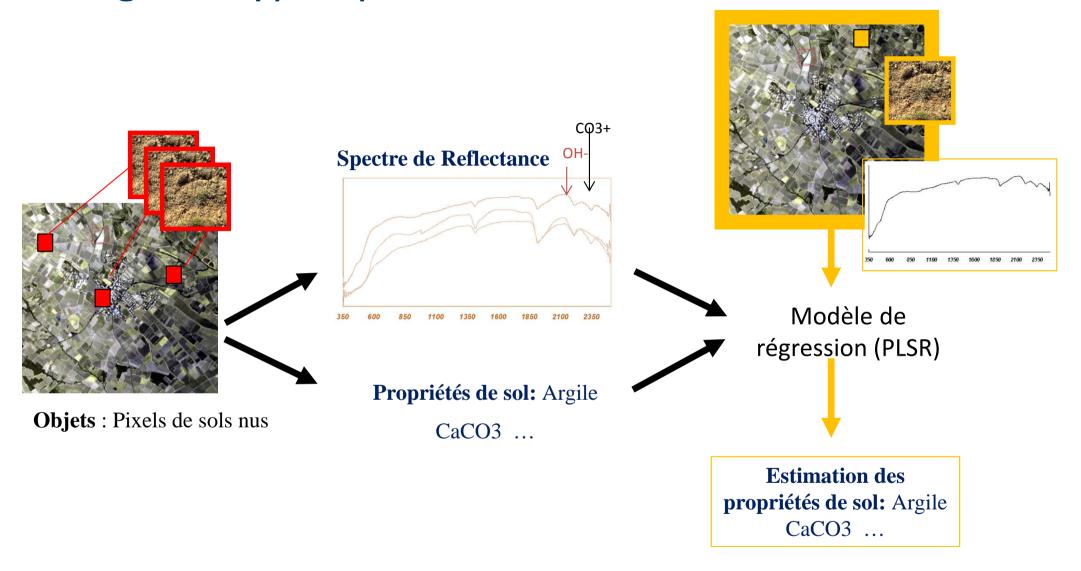
Sources USDA-NRCS, http://soils.usda.gov/use/worldsoils/mapindex

- → Une limite majeure : disponibilités en données sol « de base »
- → Un enjeu scientifique: développer de nouvelles méthodes de spatialisation des propriétés de sol

Imagerie hyperspectrale Vis-NIR en science du sol

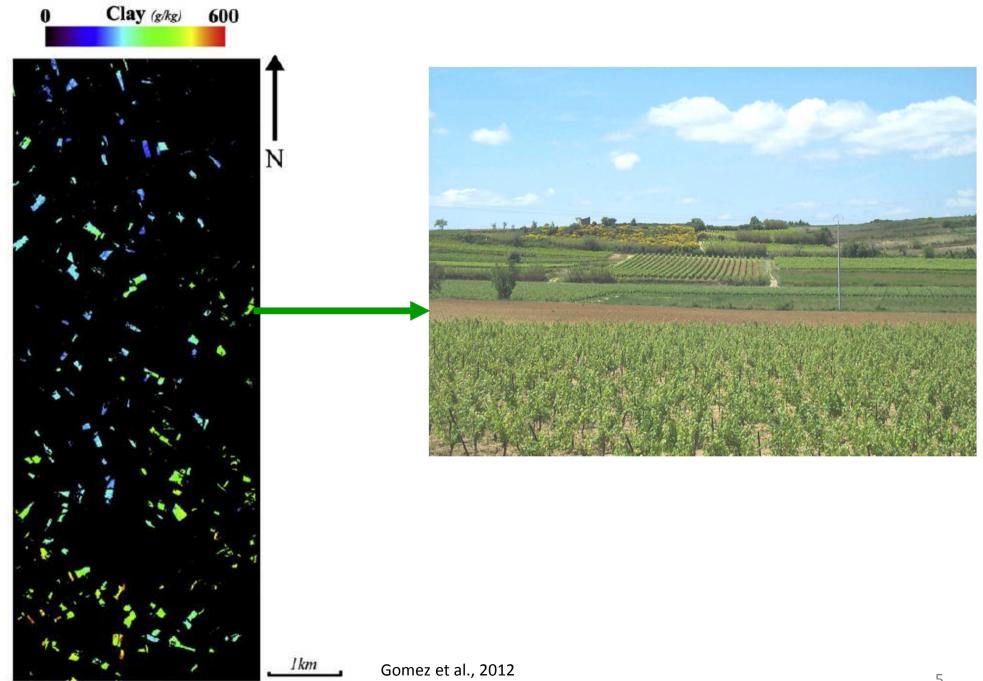


Imagerie hyperspectrale Vis-NIR en science du sol

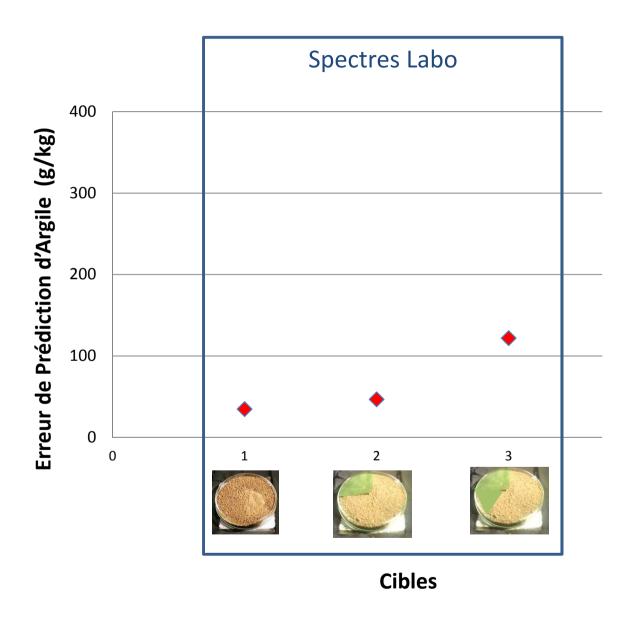


Stevens et al. 2007, Gomez et al. 2008, Selige et al. 2008, Gomez et al. 2012 etc ...

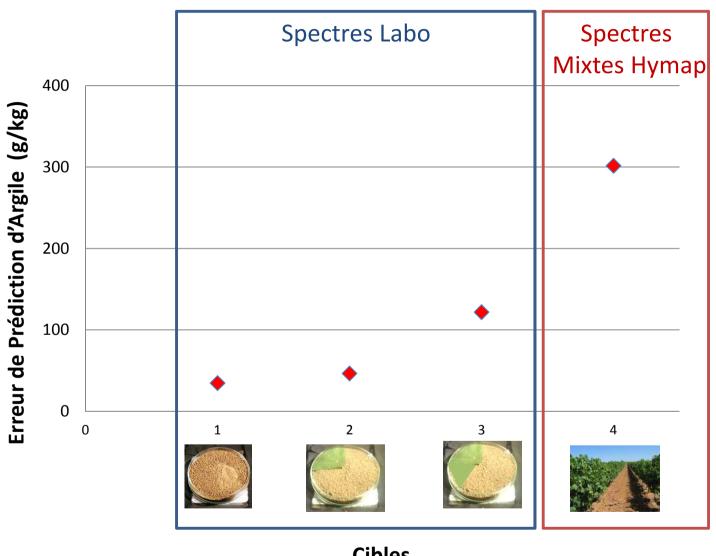
Imagerie hyperspectrale Vis-NIR en science du sol



Impact de la végétation

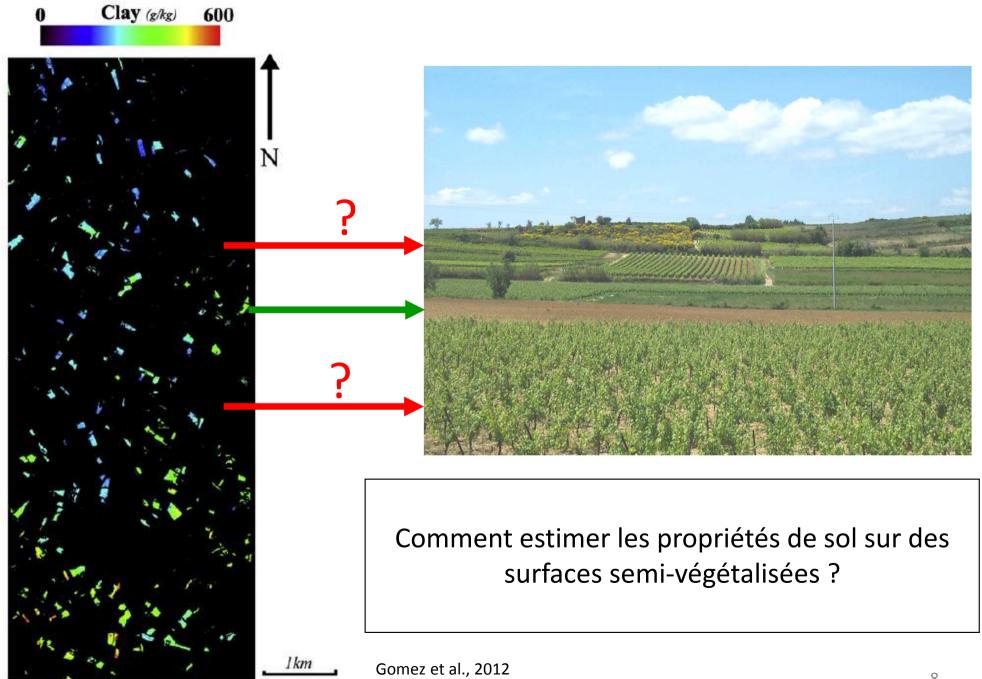


Impact de la végétation

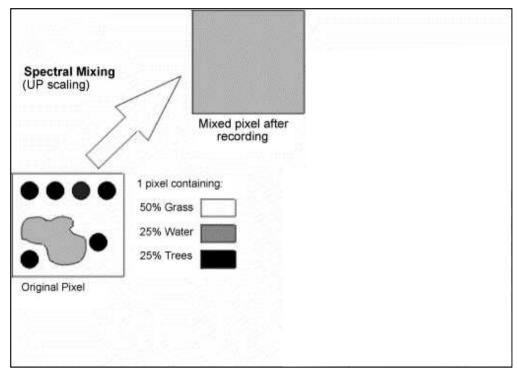


Cibles

Problématique

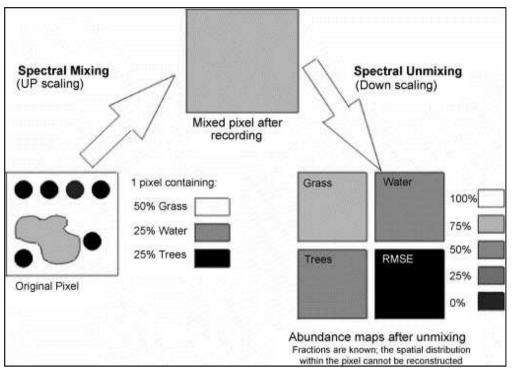


Etat de l'art en contexte « mixte » : Unmixing ?



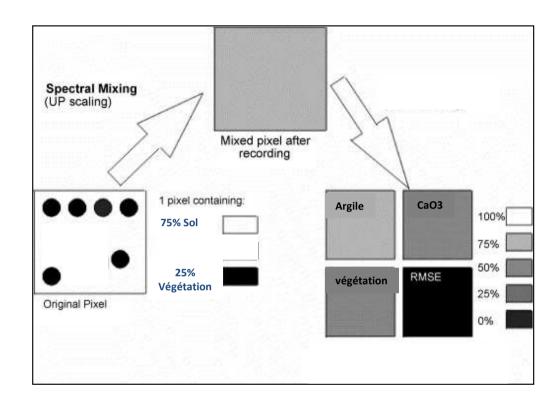
Smith et al. (1985)

Etat de l'art en contexte « mixte » : Unmixing ?



Smith et al. (1985)

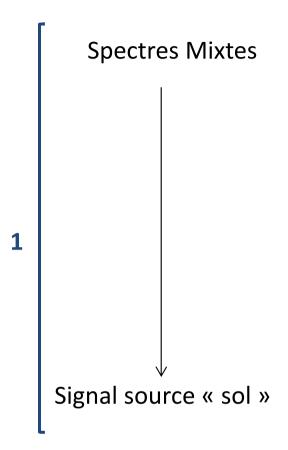
Etat de l'art en contexte « mixte » : Unmixing ?

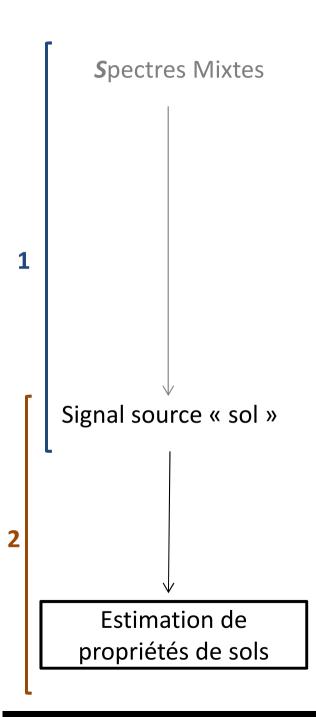


Rechercher une propriété du sol ⇔ Rechercher un sous-composant du sol

Or Impossible d'avoir un spectre référence (« endmembers ») pour l'Argile, le CaCO3, le Carbone organique ...

⇒ Impossible d'utiliser les méthodes d'unmixing, nécessitant des endmembers.





N spectres Mixtes Séparation Aveugle des sources (BSS) 1 **M** signaux sources Identification du signal source « sol » Signal source « sol »

- x(t)=vecteur des **N** signaux mélangés
- s(t)=vecteur des M signaux sourcesx(t)=A.s(t)

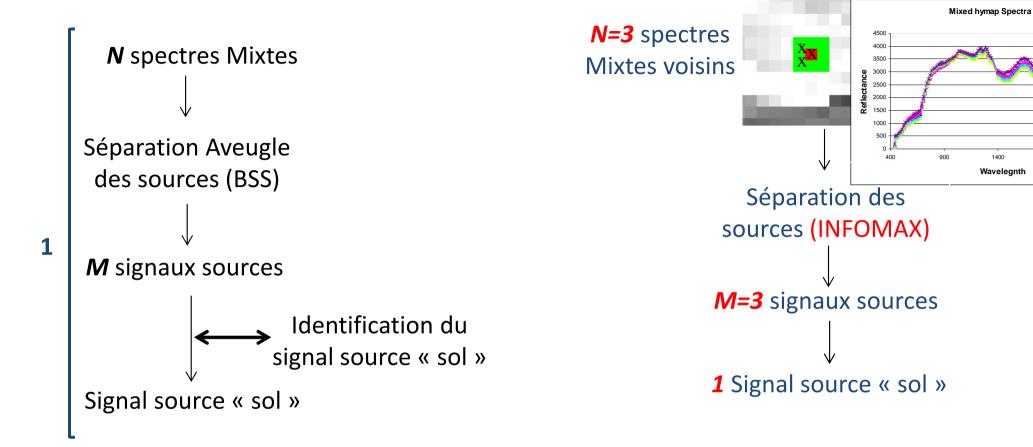
L'objectif de la BSS est de retrouver une estimation des signaux sources Ŝ, sans connaissance a priori des abondances A, tel que :

$$\hat{S}(t) = W \cdot x(t)$$

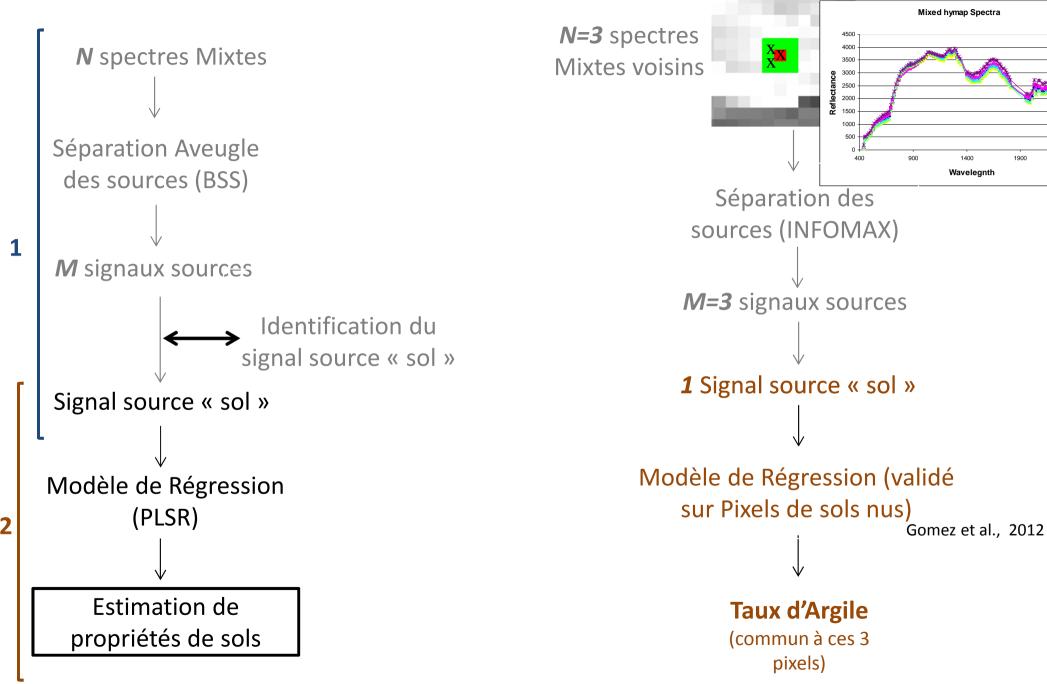
Herault and Jutten, 1982

Algorithme BSS utilisé: INFOMAX, basé sur un réseau de neurones

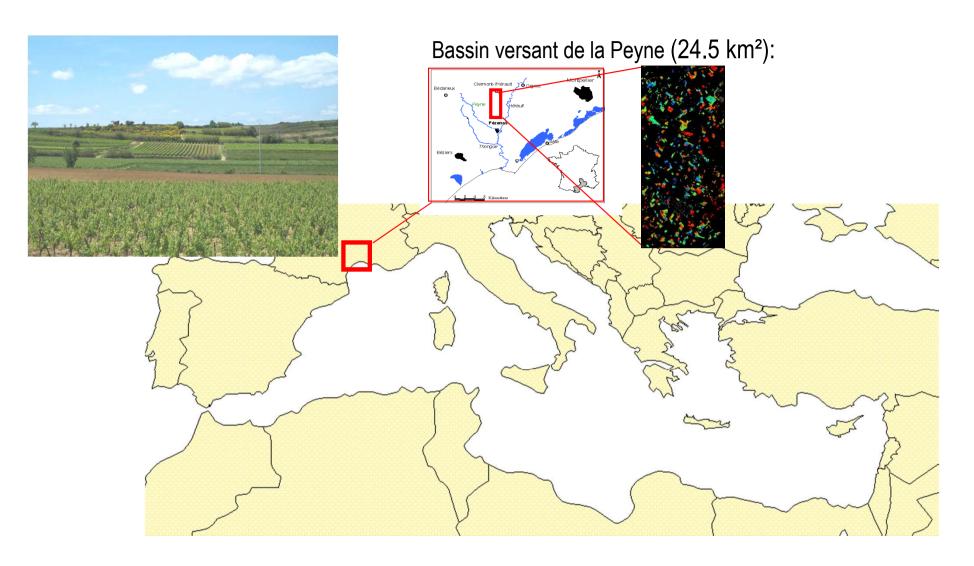
(Bell and Sejnowski, 1995)



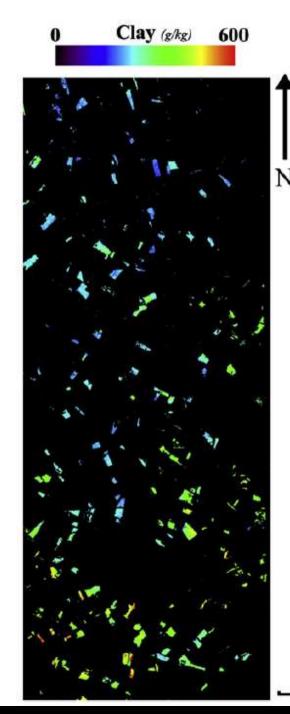
Wavelegnth



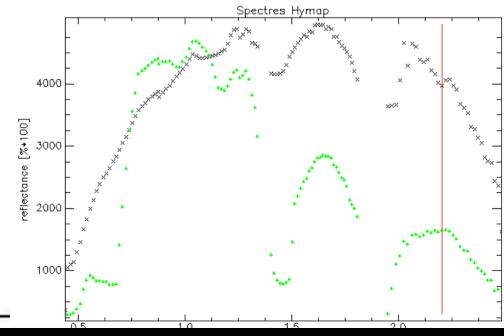
Terrain d'étude



Données hyperspectrales aéroportées HyMap



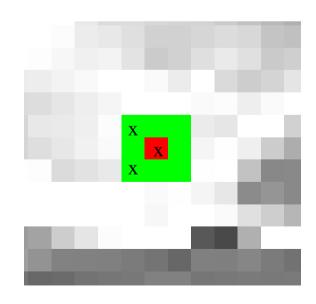
- Domaine spectral: 400-2500 nm
- Nombre de bandes spectrales utilisées : 114
- Résolution spatiale : 5 m
- 100:1 < SNR < 500:1
- Corrections atmosphériques avec ATCOR 4
- 4% de la zone couverte par des sols nus

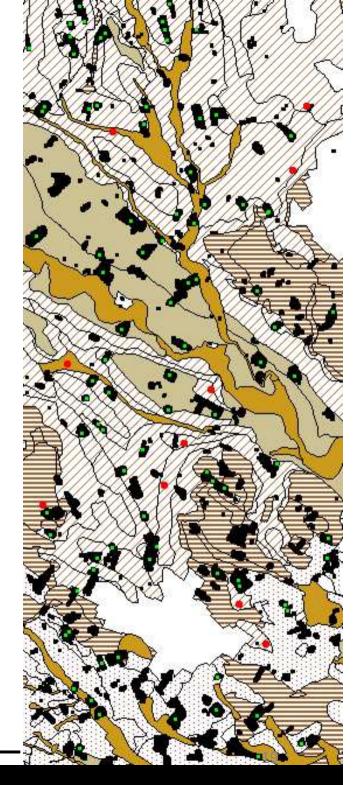


1km

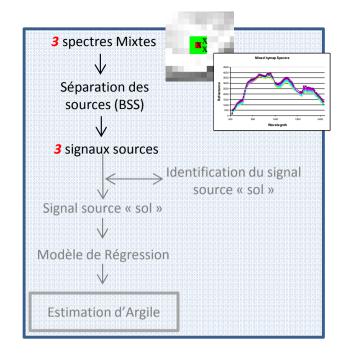
Données

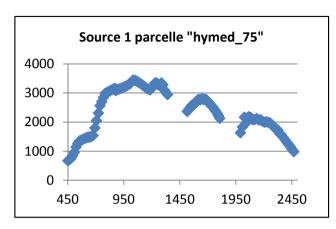
- <u>49 échantillons de sol</u> récoltés en 2009 sur des surfaces couvertes par un <u>mélange [sol & vigne]</u> au moment de l'acquisition de l'image. *0,2 < NDVI < 0,72*
- Analyse physico-chimique d'<u>Argile</u> (Labo ARRAS)

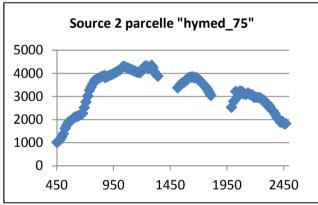


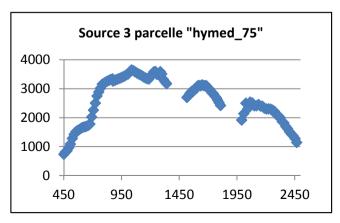


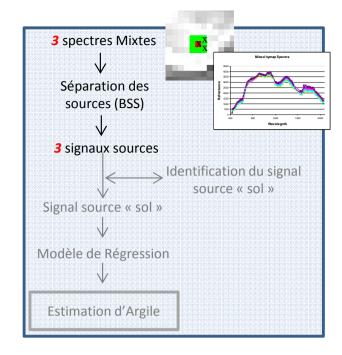
<u>1km</u>

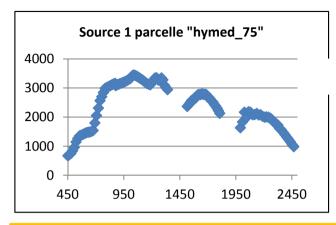




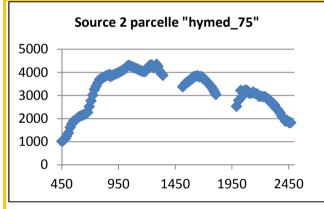


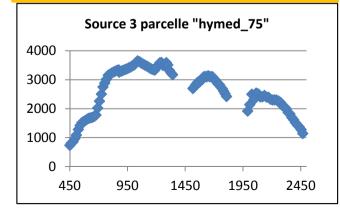




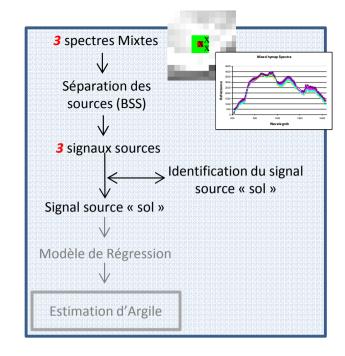


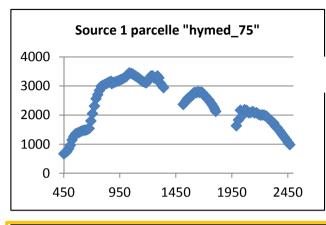
$$R^2_{avec « Sol moyen »} = 0.6$$



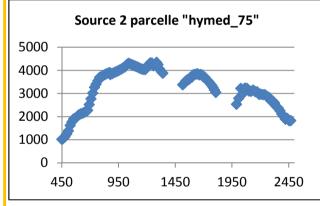


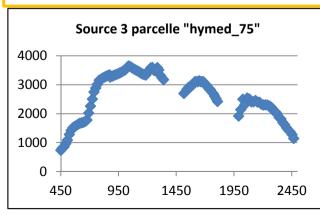
$$R^2_{avec « Sol moyen »} = 0.65$$

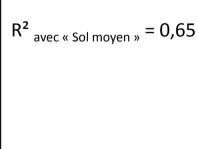


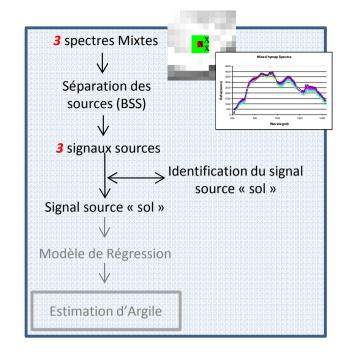


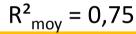
$$R^2_{avec « Sol moyen »} = 0.6$$

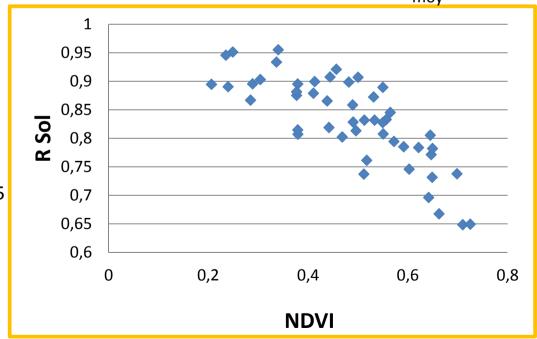


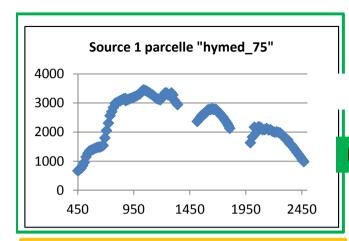








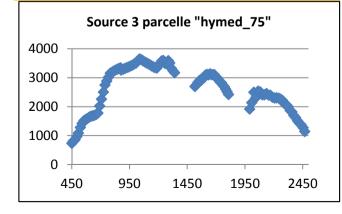




$$R^2$$
 avec « Vigne Verte » = 0,92

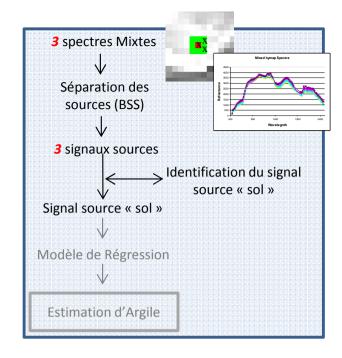


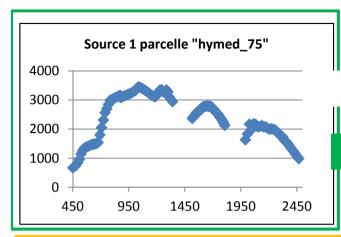
$$R^2_{avec ext{ w Vigne Verte }} = 0.84$$



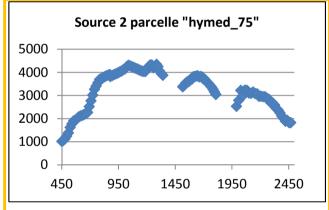
$$R^2_{avec \ll Sol moyen } = 0.65$$

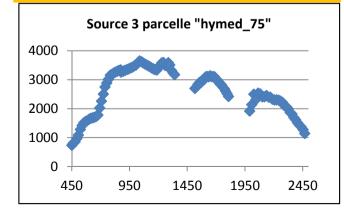
$$R^2_{avec « Vigne Verte »} = 0.88$$



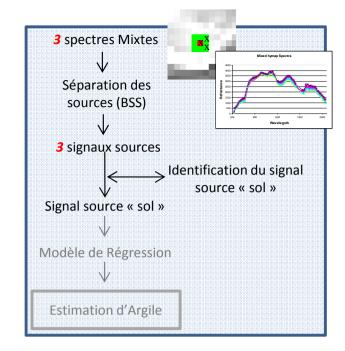


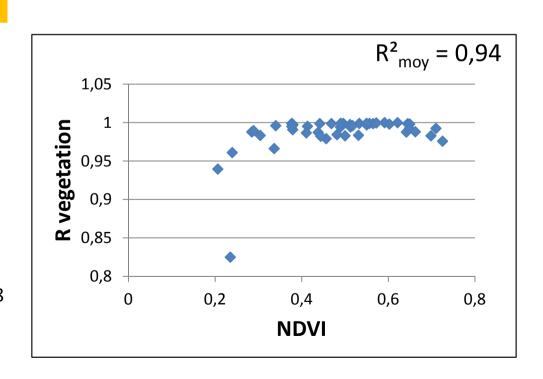
$$R^2_{avec « Sol moyen »} = 0,6$$

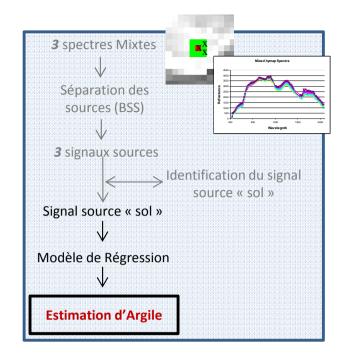


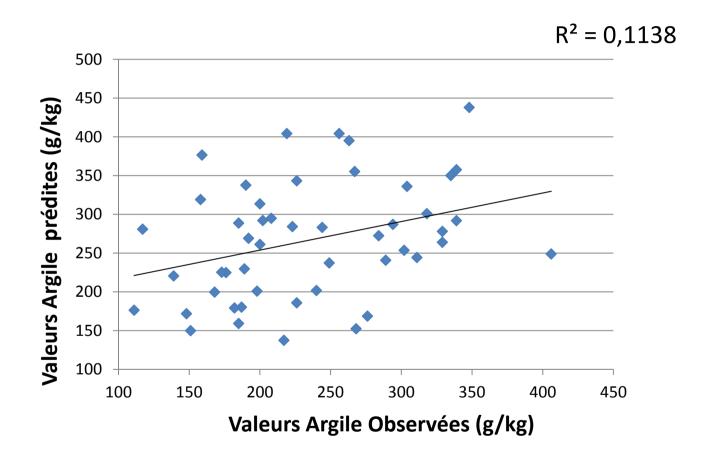


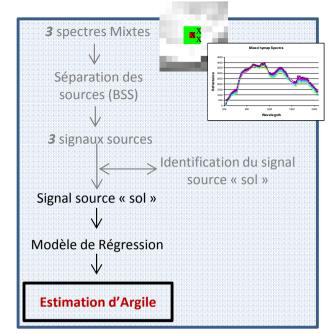
$$R^2_{avec \ll Sol moyen } = 0.65$$

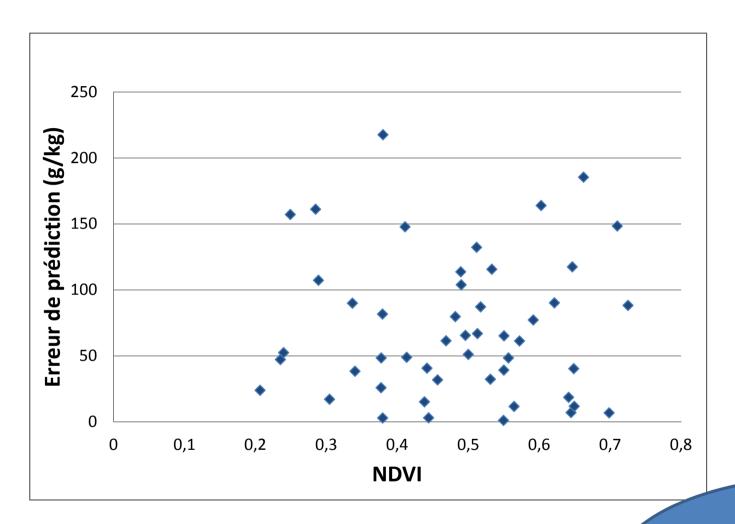


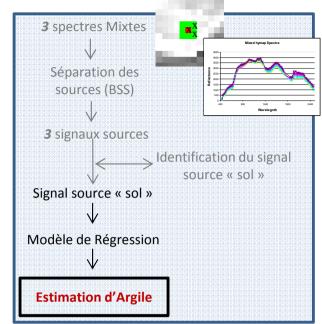




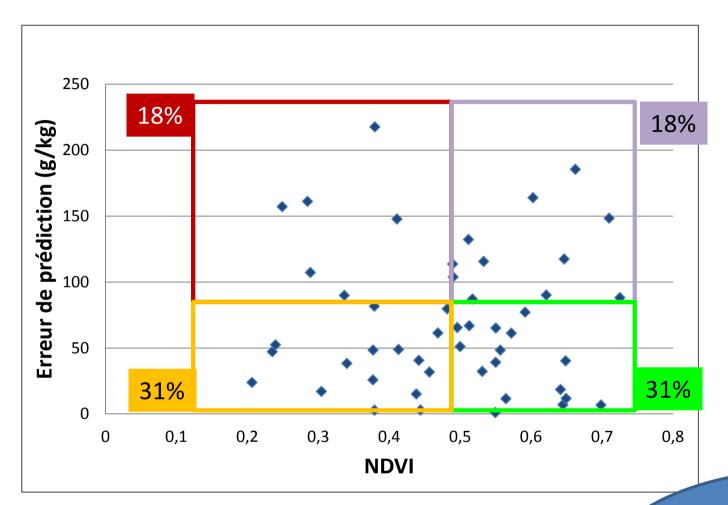


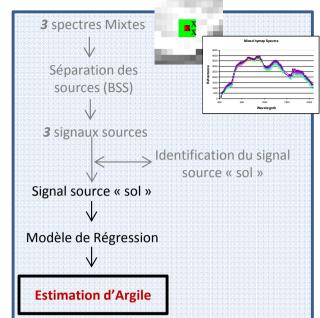






Erreur moyenne de prédiction sur les 49 parcelles : 70 g/kg





=> Pas de relation entre l'erreur de prédiction et le NDVI dans le mélange

Erreur moyenne de prédiction sur les 49 parcelles : 70 g/kg

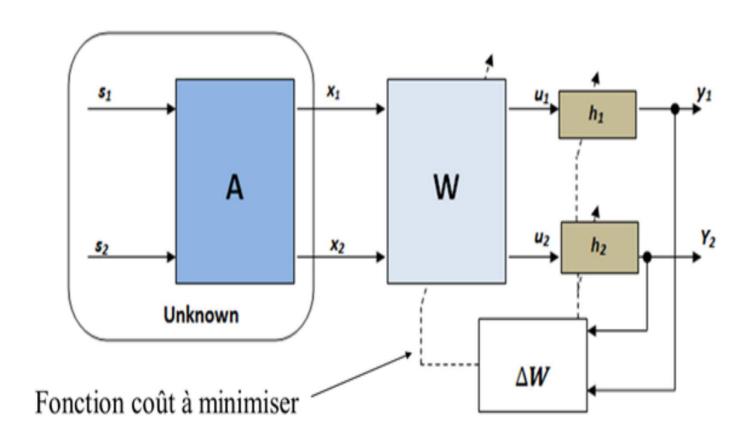
Conclusion

- Extraction du signal sol prometteur avec le concept BSS :
 - Signal sol extrait après BSS avec un $R^2 = 0.75$
 - Signal végétation extrait après BSS avec un R² = 0,94
- Résultats décevants pour la prédiction d'argile après BSS (R²=0.1)
- Néanmoins encourageants : 62% des 49 parcelles tests ont une erreur de prédiction < 80g/kg

Conclusion

- Extraction du signal sol prometteur avec le concept BSS :
 - Signal sol extrait après BSS avec un $R^2 = 0.75$
 - Signal végétation extrait après BSS avec un R² = 0,94
- Résultats décevants pour la prédiction d'argile après BSS (R²=0.1)
- Néanmoins encourageants : 62% des 49 parcelles tests ont une erreur de prédiction < 80g/kg
 - ⇒ Comprendre pourquoi certain spectres de pixels mixtes sont plus difficiles à séparer puis prédire.
 - » Hétérogénéité de la surface ?
 - » Végétation différente ?
 - » Sol particulier ?
 - ⇒ Importance du choix du signal «sol» en sortie de BSS.
 - ⇒ Amélioration de la paramétrisation d'INFOMAX
 - ⇒ Tests sur d'autres algorithmes : Non-negative matrix factorization ?

Algorithme: Infomax

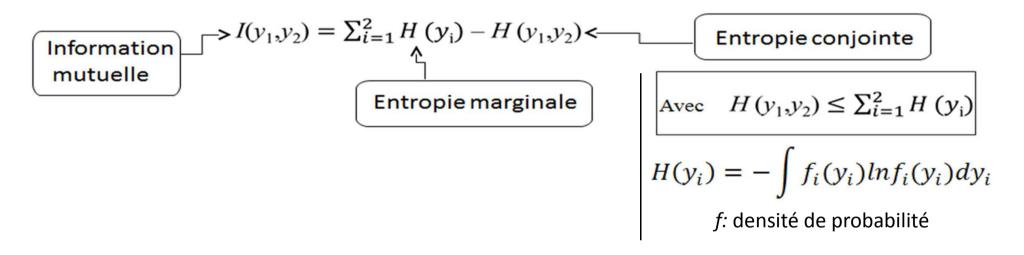


- •INFOMAX est un algorithme basé sur un réseau de neurones
- •La sortie u du réseau est transformée par une fonction non-linèaire h tel que y = h(u)
- •Une fonction coût mesurant l'indépendance statistique de la sortie **y** est optimisée

Objectif: minimiser l'information mutuelle entre les sorties y du réseau de neurones

Infomax

Le fait de minimiser l'information mutuelle entre les signaux à la sortie du réseau assurera l'indépendance de ces signaux



minimiser l'information mutuelle revient à maximiser l'entropie conjointe, l'optimisation sera réalisée en utilisant l'algorithme du gradient stochastique

Pour déduire l'équation d'apprentissage finale du réseau de neurones nous allons maximiser l'entropie conjointe

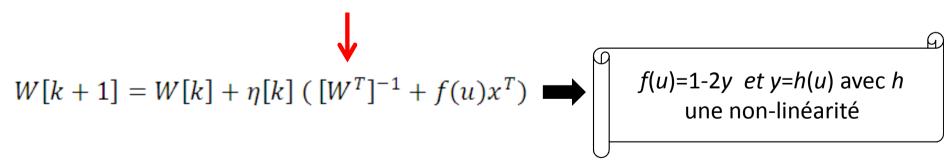
Infomax

La maximisation (ou bien minimisation) d'une fonction coût $\mathcal{L} \{ \Phi \}$ par rapport à un paramètre Φ est obtenue en appliquant la méthode du gradient stochastique à l'itération (l+1)

$$\Phi(I+1) = \Phi(I) + \eta_{\Phi} \frac{\partial L \{\Phi(I)\}}{\partial \Phi} = \Phi(I) + \eta_{\Phi} \Delta \Phi(I)$$

ηφ est Le pas d'apprentissage

Dans notre cas la fonction coût à maximiser est l'entropie conjointe H(y) et le paramètre est W. Ceci nous amènera à l'équation d'apprentissage finale du réseau de neurones :



Paramètres

 Learning rate (facteur d'actualisation ou pas d'apprentissage) 0.02

Nombre d'itérations maximales 50

 Fonction quadratique non-linéaire à intégrer dans l'équation d'apprentissage sigmoidale (f(x)=1/(1+e-x))