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Kernel methods in hyperspectral imagery

Kernels methods are popular and effective algorithms, which are widely used for
many applications 1:

Classification and detection,

Biophysical parameter estimation,

Unmixing, . . .

They are well suitable for the processing of hyperspectral images:

KM are robust to the high spectral dimension,

Joint spatial and spectral processing are easy with KM,

Few hyperparameters to tune,

Very good results.

1G. Camps-Valls and L. Bruzzone, Kernel Methods for Remote Sensing Data Analysis, Wiley,
2009.



Kernel methods methodology

Kernel method can be decomposed into three steps:

1. Choose the kernel:
I k(xi ,xj) =

(
〈xi ,xj〉+ 1

)p,

I k(xi ,xj) = exp
(
−
‖xi − xj‖2

2σ2

)
.

2. Tune the hyperparameters p (e.g., p or σ2).

3. Learn the parameters of the processing rule, i.e., solve a (constrained) linear
optimization problem.

I Ridge regression: α̂ =
(

K + λI
)−1y

I Support vectors machines : α̂ = max
α

[
αt1− 1

2
αtKα

]
subject to 0 � α and

αty = 0.



Choosing the hyperparameters 1/2

Crucial step: improve or decrease drastically the performances of KM

Cross validation is conventionally used. CV estimates the expected error R.

Exp. 2
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R(p) ≈ 1
k
∑k

i=1 Ri
emp

Good behavior in various supervised learning problem but high computational
load.



Choosing the hyperparameters 2/2

Others strategies: Optimization of an upper bound of the expected error, e.g., the
radius-margin bound or the span bound2.

Gradient based approaches,

Genetic approaches.

However:

Non convex optimization problem,

Cannot manage a lot of training samples.

The upper bound depends on α̂

2Chapelle, O., Vapnik, V., Bousquet, O. and Mukherjee, S., Choosing Multiple Parameters for
Support Vector Machines, Machine Learning, 2002.
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Kernel target alignment

Kernel target alignment measures the degree of agreement between a kernel
and a learning task.

No need to compute α̂.

Exhaustive search or optimization of the alignment.

Positively applied to remote sensing.

Interesting formulation of the problem:
Approximation of an ideal kernel matrix.

Q
K

KI

K̂

D(KI ,K)



Kernel methods

Kernel matrix approximation

Experimental results

Conclusions and perspectives



Kernel matrix approximation principles for classification

Training set S = {xi , yi}n
i=1, xi ∈ Rd .

Gaussian kernel: k(xi ,xj) = exp
(
− ‖xi − xj‖2

2σ2

)
 similarity measure between

xi and xj .

In the ideal situation: k(xi ,xj) ≈ 1 if yi = yj ; k(xi ,xj) ≈ 0 otherwise.

Empirical ideal kernel:

kI (xi ,xj) =
{

1 if yi = yj ,

0 otherwise.

KMA principle: Find the hyperparameter σ2 such as the ideal conditions are
fulfilled (as much as possible) for all (xi ,xj).



Definitions

Kernel matrix:

K =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn ,x1) k(xn ,x2) . . . k(xn ,xn)



Frobenius inner product:

〈K1,K2〉F =
n∑

i,j=1

(K1)ij × (K2)ij =
n∑

i,j=1

k1(xi ,xj)k2(xi ,xj)



Similarity measure between kernel matrices

Alignment:

A(σ) = 〈K,KI 〉F
‖K‖F‖KI‖F

Frobenius distance (equivalent to mean square error):

D(σ) = ‖K−KI‖2
F

n2 = ‖K‖
2
F + ‖KI‖2

F − 2〈K,KI 〉F
n2

Correlation:
C (σ) = 〈K− K̄,KI − K̄I 〉F

‖K− K̄‖F‖KI − K̄I‖F

where K̄ :=
[

1
n2

∑n
i,j=1 k(xi ,xj)

]
1 and 1 is the n-square matrix of ones.



Similarity vs Expected error
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Figure: Normalized value of classification errors estimated with CV (in blue), A (in red), D (in
black) and C (in magenta) for the University Area. The horizontal axis correspond to the
value of the parameter σ2 in log scale and the vertical axis correspond to the normalized value
of CV, A, D and C . These values have been normalized for the purpose of visualization.



Optimization of the hyperparameters 1/2

A, D and C are derivable w.r.t. σ2:

∂A(σ2)
∂σ2 = 1

‖KI‖F

[〈
KI , ∂K

∂σ2

〉
F

‖K‖F
−
〈K,KI 〉F

〈
K, ∂K

∂σ2

〉
F

‖K‖3/2
F

]
∂D(σ2)
∂σ2 = 2

n2

〈
K−KI ,

∂K
∂σ2

〉
F

∂C (σ2)
∂σ2 = 1

‖KI − K̄I‖F


〈

KI − K̄I , ∂K
∂σ2 − ∂K̄

∂σ2

〉
F

‖K− K̄‖F

−
〈K− K̄,KI − K̄I 〉F

〈
K− K̄, ∂K

∂σ2 − ∂K̄
∂σ2

〉
F

‖K− K̄‖3/2
F


For the Gaussian kernel:(

∂K
∂σ2

)
ij

= ‖xi − xj‖2

2σ4 k(xi ,xj).



Optimization of the hyperparameters 2/2

Positivity is obtained by optimizing according to ln(σ):(
∂K

∂ ln(σ)

)
ij

=
(
∂K
∂σ2

)
ij

∂σ2

∂ ln(σ) = 2σ2
(
∂K
∂σ2

)
ij
,

Finally, the derivative is simply computed as:(
∂K

∂ ln(σ)

)
ij

= −2 log
(
(K)ij

)
(K)ij ,

Newton method for the optimization of the hyperparameter,

Hessian matrix is computable at reduced cost.
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Experimental setup

Data scaled between [-1,1] for each variable,

12.5%-25% of the total number of pixels used for training,

Experiments have been repeated 20 times,

Comparison with conventional CV(σ2 ∈ [2−5, 2−4.5, . . . , 23]),

LIBSVM solver,

One vs one multiclass strategy.



ROSIS-03

University Area, Pavia - Italy

Airbone,

[H W]=[610 340],

103 channels,

1.3 m/pixel,

42776 referenced samples,

9 classes : Asphalts, Meadow,
Gravel, Tree, Metal Sheet, Bare
Soil, Bitumen, Brick and Shadow.
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Results

Global accuracies & processing time
Method OA κ Proc. time (s)

CV 94.1 (0.13) 0.92 (1.8×10−3) 325.0 (6.1)
A 92.4 (0.23) 0.90 (3.2×10−3) 58.9 (12.0)
D 93.3 (0.19) 0.91 (2.5×10−3) 70.3 (37.6)
C 93.0 (0.24) 0.90 (3.2×10−3) 114.0 (41.4)

Optimal hyperparameter:
CV A D C

σ2 0.17 1.28 0.81 1.02

Default hyperparameter of LIBSVM (σ2 = 0.5 ∗ d ≈ 50)  OA=78%.



HySpex
Village of Villelongue, France

Airbone,

[H W]=[1000 2000],

160 channels,

0.5 m/pixel,

32016 referenced samples,

10 woody classes: Ash tree, Chestnut tree, Lime tree, Hazel tree . . .



Results

Global accuracies & processing time
Method OA κ Proc. time (s)

CV 95.6 (0.12) 0.94 (1.4×10−3) 2249.4 (48.9)
A 95.4 (0.13) 0.94 (1.6×10−3) 68.9 (8.2)
D 95.6 (0.13) 0.95 (1.6×10−3) 177.3 (28.2)
C 95.6 (0.13) 0.95 (1.6×10−3) 82.6 (46.0)

Default hyperparameter: OA ≈ 34%,

Alignment is about 30 times faster.
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Conclusions and perspectives

Conclusions
I The approach is effective for tuning the hyperparameters,
I Fast and accurate,
I Multiple hyperparameters (ellipsoidal Gaussian kernel) have been also investigated

but results are not convincing.

Perspectives
I Ideal kernel for regression, inversion?
I Other kernels?
I Optimization for multiple hyperparameters?
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