Analyse des résidus de tir à l'arme à feu par des méthodes de démélange spectral

C. Meillier, V. Achard, P.Déliot, B. Corcelle, T.Dartigalongue, A. Desmarais, C. Giacometti

retour sur innovation

Introduction

Intérêts : Amélioration de la visibilité des résidus de poudre sur les tissus foncés ou à motifs colorés

Image en couleur réelle

- I. Méthodes d'extraction des pôles de mélange
- II. Présentation du jeu de données
- III. Analyse comparative des résultats obtenus

Plan de la présentation

I. Méthodes d'extraction des pôles de mélange

- 1. Prétraitement des données
- 2. Méthode OSP
- 3. Méthode N-FINDR
- 4. Méthode ICE

II. Présentation du jeu de données

III. Analyse comparative des résultats obtenus

Modélisation des données

$X = \begin{pmatrix} x_1(1) & \cdots & x_N(1) \\ \vdots & \ddots & \vdots \\ x_1(L) & \cdots & x_N(L) \end{pmatrix}$ Modèle de mélange linéaire : $S = \begin{pmatrix} s_1(1) & \cdots & s_P(1) \\ \vdots & \ddots & \vdots \\ s_1(L) & \cdots & s_P(L) \end{pmatrix}$ X = SA $A = \begin{pmatrix} a_1(1) & \cdots & a_N(1) \\ \vdots & \ddots & \vdots \\ a_1(p) & \cdots & a_N(p) \end{pmatrix}$ avec •N = nombre de pixel de l'image

- •L = nombre de bandes spectrales
- •X = image hyperspectrale
- •A = matrice des abondances
- •S = matrice des spectres des pôles de mélange
- p = nombre de composants purs dans le mélange

Géométrie du modèle :

Tous les pixels sont contenus dans un simplexe de p sommets de dimension *p*-1 du fait des contraintes d'additivité et positivité sur les abondances.

Prétraitement spectral des données :

Recherche du nombre p de composants purs

 \rightarrow Par analyse en composantes principales (ACP)

Pour les méthodes N-FINDR et ICE :

 \rightarrow Réduction de dimension par ACP

Prétraitement spatial des données :

Méthode développée par M. Zortea & A. Plaza

- Idée : Les composants purs sont présents dans des zones homogènes
- Principe : Augmenter la probabilité de ces pixels d'être sélectionnés comme pôles de mélange en les plaçant sur l'enveloppe convexe du nuage

Méthodes d'extraction des pôles de mélange

Prétraitement spatial des données :

Méthode OSP (Orthogonal Subspace Projection)

Hypothèse : Tous les composants sont présents à l'état pur, sur au moins un pixel

Observations sur 3 bandes spectrales

ACP \rightarrow 2 bandes utiles \Leftrightarrow 3 pôles

Méthode OSP (Orthogonal Subspace Projection)

Méthode OSP (Orthogonal Subspace Projection)

Méthode N-FINDR

Hypothèse : Tous les composants sont présents à l'état pur, sur au moins un pixel

Méthode ICE (Iterative Constrained Estimation)

Minimisation de l'erreur quadratique :

$$J^{2} = \sum_{i=1}^{N} \left\| \widetilde{X}_{i} - X_{i} \right\|^{2}$$

Ajout d'un critère de régularisation de la taille du simplexe :

$$RSS_{reg} = J^{2} + \lambda T_{simplexe} \qquad (0 < \lambda < 1)$$

I. Méthodes d'extraction des pôles de mélange

II. Présentation du jeu de données

- 1. Les échantillons de tissus
- 2. Les éléments d'intérêt

III. Analyse comparative des résultats obtenus

Les échantillons de tissus :

Tissus colorés et foncés Tir à 15 cm de la cible Arme : Automatic CZ75 Cartouches : Partizan 9 mm Mesures HySpex 0.4 - 1 µm

Echantillon de tissus avec résidus de poudre et impact

Les échantillons de tissus :

Tissus colorés et foncés Tir à 15 cm de la cible Arme : Automatic CZ75 Cartouches : Partizan 9 mm Mesures HySpex 0.4 - 1 µm

Les éléments d'intérêts :

Echantillon de tissus avec résidus de poudre et impact

Les échantillons de tissus :

Tissus colorés et foncés Tir à 15 cm de la cible Arme : Automatic CZ75 Cartouches : Partizan 9 mm Mesures HySpex 0.4 - 1 µm

Les éléments d'intérêts :

- La collerette autour de l'impact

Echantillon de tissus avec résidus de poudre et impact

Les échantillons de tissus :

Tissus colorés et foncés Tir à 15 cm de la cible Arme : Automatic CZ75 Cartouches : Partizan 9 mm Mesures HySpex 0.4 - 1 µm

Les éléments d'intérêts :

- La collerette autour de l'impact
- Les résidus de poudre carbonisée

Echantillon de tissus avec résidus de poudre et impact

Les échantillons de tissus :

Tissus colorés et foncés Tir à 15 cm de la cible Arme : Automatic CZ75 Cartouches : Partizan 9 mm Mesures HySpex 0.4 - 1 µm

Les éléments d'intérêts :

- La collerette autour de l'impact
- Les résidus de poudre carbonisée
- Les traces de fumée

Echantillon de tissus avec résidus de poudre et impact

- I. Méthodes d'extraction des pôles de mélange
- II. Présentation du jeu de données

III. Analyse comparative des résultats obtenus

- 1. Critères d'évaluation des performances des méthodes
- 2. Les résultats
- 3. Une approche différente

Critères d'évaluation des performances :

Erreur de reconstruction

$$RMSE = \frac{1}{I \times J} \sum_{i=1}^{I} \sum_{j=1}^{J} \sqrt{\sum_{k=1}^{L} (\hat{x}(i, j, k) - x(i, j, k))^2}$$

Angle spectral moyen

$$SAM = \frac{1}{I \times J} \sum_{i=1}^{I} \sum_{j=1}^{J} \cos^{-1} \left(\frac{\left\langle \hat{X}(i,j); X(i,j) \right\rangle}{\left\| \hat{X}(i,j) \right\| \left\| X(i,j) \right\|} \right)$$

Résultats obtenus sur toutes les images avec les différentes méthodes

METHODES	SAM MOYEN	RMSE
OSP	2.78°	11.83 %
OSP & SPP	2.17°	11.01 %
N-FINDR	2.73°	8.82 %
N-FINDR & SPP	4.42°	9.55 %
ICE	7.75°	6.85 %

Caractéristiques des images :

- Un pôle par couleur de tissu + un pôle pour les résidus de poudre
- Environ 3000 pixels

Analyse comparative des résultats obtenus

Carte d'abondance de la poudre + fumée

OSP

N-FINDR

ICE

OSP & SPP

N-FINDR & SPP

Analyse comparative des résultats obtenus

Résultats N-FINDR sur le tissu rayé

(ACP). Sélection des pôles de mélange

Tissu brun

Tissu noir

Tissu jaune

Poudre et fumée

Tissu rouge

Erreur de reconstruction

ONERA

THE FRENCH AEROSPACE LAB

Une autre approche

Principe :

- 1. Détecter les spectres des matériaux propres au tissu
 - Utilisation de l'échantillon témoin de tissu pour extraire les spectres
- 2. Déduire de l'erreur de reconstruction la localisation des résidus de poudre
 - Reconstruction de l'image à l'aide des spectres et abondances estimées
 - Calcul de l'erreur d'estimation
 - Tracé de l'histogramme de l'image de l'erreur
 - Définition de classes de pixels
 - Attribution niveaux de gris à chaque classe

pour améliorer la visualisation des résidus de poudre

ONERA

THE FRENCH APPOSPACE LAS

Résultats obtenus sur le tissu rayé

Estimation des spectres par OSP & SPP et calcul des abondances :

Abondance tissu brun

Abondance tissu jaune

Abondance tissu noir

Abondance tissu rouge

Erreur de reconstruction et seuillage :

Erreur de reconstruction

Erreur de reconstruction seuillée

 $\rightarrow\,$ Amélioration de la visibilité des traces de fumée

Performances satisfaisantes pour les méthodes OSP et N-FINDR

Défaut de ces méthodes :

- Hypothèse de présence des composants à l'état pur (fumée, poudre)
- Pôles estimés = pixels de l'image → mauvaise estimation des spectres des résidus de poudre

Solution : Détection de ces résidus comme des anomalies

Merci de votre attention

retour sur innovation

