Integration of canopy biophysical variables infered from hyperspectral data into SVAT models

S. Jacquemoud et al.

Institut de Physique du Globe de Paris / Université Paris Diderot

Colloque d'inauguration de la Société Française de Télédétection Hyperspectrale / 7-8 avril 2011 / Paris (France)

COST Action ES0903 EUROSPEC: Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe http://cost-es0903.fem-environment.eu/

Four Working Groups:

WG1) State of the art of the optical sampling networks, protocol definition
 WG2) Intercomparison: instrument characterization, standardization, intercalibration and measurement protocol issues
 WG3) New instruments development

WG4) Upscaling biophysical parameters and fluxes from the ecosystem at upper levels

Description of the ecosystem geography (ecoregions) of the United States

http://www.fs.fed.us/land/ecosysmgmt/index.html

Soil-Vegetation-Atmosphere Transfer (SVAT) models

Calvet et al. (1998), Agricultural and Forest Meteorology, 92:73–95; Olioso et al. (2005), Irrigation and Drainage Systems, 19:377–412.

Biophysical processes	Ecophysiological variables
Interception of solar radiation	fAPAR Green LAI Canopy structure
Photosynthesis / Respiration	LAI Leaf pigment and water content Leaf anatomy
Decomposition of organic matter	Soil water content Leaf C:N ratio
Evapotranspiration	fCover LAI Albedo Soil water content Leaf water content
Plant species / Biodiversity	LAI Canopy structure Leaf chemical content

Rautiainen et al. (2010), Scandinavian Journal of Forest Research, 25:325–339.

- water (vacuole) : 90-95% ←
- dry matter (cell walls) : 5-10%
 - cellulose: 15-30%
 - hemicellulose: 10-30%
 - proteins: 10-20% ⇔ N
 - lignin: 5-15% \Leftrightarrow C
 - starch: 0.2-2.7%
 - sugar
 - etc.
- wax (cuticle)
- chlorophyll a and b + carotenoids (chloroplasts)
- other pigments (cytoplasm)
 - anthocyanins
 - flavons
 - brown pigments
 - etc.

Extraction of canopy biophysical parameters

- Combination of narrow bands
- Absorption band depth
- Spectral shifts
- Statistical approach Multiple linear regression model Stepwise linear regression analysis Partial least square regression
- Wavelet decomposition
- Spectral mixture analysis
 Principal components analysis
 Multiple endmember mixture model
 Hierarchical foreground-background analysis
- Model inversion

Approaches based on the observation space: iterative, look-up-table Approaches focusing on the space of leaf variables: artificial neural networks

Estimation of soil C:N ratio using partial least squares regression

Predicted soil C:N ratios (organic plus mineral) for the White Mountain National Forest of New Hampshire, USA

Wessman et al. (1988), Nature, 335:154–156 ; Ollinger et al. (2002), Ecology, 83:339–355.

Estimation of canopy water content using hierarchical foreground-background analysis

Water content (mg H₂O / g dry weight)

Ustin et al. (1998), Remote Sensing of Environment, 65:280–291.

Estimation of leaf chlorophyll content and SLA using optimized vegetation indexes

Le Maire et al. (2008), Remote Sensing of Environment, 112:3846–3864.

Coupled states, processes and scales

Schaepman et al. (2009), Remote Sensing of Environment, 113:S123–S137.

PROSPECT + SAIL = PROSAIL

Jacquemoud et al. (2009), Remote Sensing of Environment, 113:S56–S66.

http://teledetection.ipgp.fr/prosail/

Estimation of leaf pigment content by inversion of PROSAIL

Féret et al. (2011), *Remote Sensing of Environment*, in preparation. http://cao.stanford.edu/

Photosystem = antenna complex + reaction centrer

The photochemical reflectance index (PRI) versus solar-induced fluorescence

ESA (2008), Flex – fluorescence explorer, Report for Assessment, ESA SP-1313/4, 126 pp.

Determination of plant biodiversity using thermal infrared spectroscopy

Liquidambar formosana (18.19)

Ribeiro da Luz & Crowley (2010), Remote Sensing of Environment, 114:404–413 ; Gerber et al. (2011), Remote Sensing of Environment, 115:404-414.

Credit: Robert O. Green (JPL-NASA)