

Imagerie hyperspectrale des hautes latitudes de Mars

Sylvain Douté et Xavier Ceamanos
Institut de Planétologie et d'Astrophysique de Grenoble
Frédéric Schmidt
Laboratoire IDES
Bin Luo
LIESMARS Wuhan Univ.
Stéphane Girard
INRIA Rhône-Alpes
Jocelyn Chanussot
Gipsa-Lab

Colloque d'inauguration de la Société Française de Télédétection Hyperspectrale

Les hautes latitudes polaires de Mars

Hémisphère nord MRO (NASA) Capteur MARCI

Spectro-imagerie IR : technique clef pour l'étude et le suivi de Mars

Domaine spectral typique: 0.4-5.0 µm

Echantillonnage spectral: ~10 nm/spectel

Résolution spatiale : ~ 10m-100km/pixel

Nombre de pixels/image : ~104-106

Nb de direction de visée : ~1 à 10

 $S/B : \sim 10-100+$

Along slit

CRISM/MRO Targeted and EPF modes

Scanning a region of interest at full spatial and spectral resolution: central observation at 18 or 36 m/pixel

Ten additional spatially binned acquisitions at 10 emergence angles from -70° to 70°: emission phase function (EPF) for a series of area of the site

Post-traitement - Fusion -obtention des observables (WP4 : LPG)

courbes spectro-photométriques

Points d'appui et couverture géométrique

Variabilité spectrale en fonction de l'angle de phase

Obstacle: le « spectral smile »

- Artéfact causé par des aberrations optiques
- La réponse spectrale CRISM (longueur d'onde centrale et largeur) d'une bande donnée change avec le numéro de colonne
- Conséquences :
 - décalage et lissage spectraux
 - gradients horizontaux dans l'espace image

« Spectral smile »: correction (WP4 : LPG)

- Première étape: égalisation de la longueur d'onde centrale
 - Spectres rééchantillonnés aux longueurs d'ondes "sweet-spot"

- Seconde étape: égalisation de la résolution spectrale
 - Spectral sharpening des bandes affectées par le "smile"

Ceamanos et Douté, IEEE TGRS 2010

Spectral smile: the correction

Spectral channel IR 155 (2 microns) of observation 5AE3 The 11 scans are plotted before and after de-smiling

Ceamanos et Douté, IEEE TGRS 2010

L'atmosphère de Mars

ténue (6mbar au sol) dominée par le CO2 gaz (95%)

marquée par les effets radiatifs liés aux **aérosols** de poussière et de glace d'eau

Transfert radiatif surface+atmosphère 1D

Parametrizing aerosol effects on gaseous absorption

TOA radiance:

$$I^{k}(\theta_{0}, \theta, \phi) \approx T^{k}_{gaz}(h, lat, long)^{\epsilon(\theta_{0}, \theta, \phi, \tau_{aer}^{k_{0}}, H_{scale}, A_{surf}^{k})}$$

$$I^{k}_{surf+aer}(\theta_{0}, \theta, \phi)$$

$$\epsilon(\theta_{0}, \theta, \phi, \tau_{aer}^{k_{0}}, H_{scale}, A_{surf}^{k}) = \psi(airmass).$$

$$\beta(\theta_{0}, \theta, \phi, \tau_{aer}^{k_{0}}, H_{scale}, A_{surf}^{k})$$

$$\beta(\theta_0, \theta, \phi, \tau_{aer}^{k0}, H_{scale}, A_{surf}^{k1}) = \frac{I^k}{\sum_{k=0}^{K} f_k \ln(\frac{I^k}{I_{surf+aer}^k}) / \ln(T_{gaz}^{\prime k})}$$

$$f_k = 1/K$$

Estimating factor β from the observations

$$p = I_{obs}(1.36\mu m)/I_{obs}(2.56\mu m)$$

$$q = ln(I_{obs}(2.07\mu m)/I_{obs}(1.94\mu m))$$

$$+ln(\alpha)0.0909$$

Ex: Observation 1880_1 airmass varying between 3 and 8

$$\beta = q/ln((T_{gas}^{\lambda}(2.07)/T_{gas}^{\lambda}(1.94))^{\psi(airmass)})$$

Mineral surfaces only

Mapping dust total optical depth from an OMEGA image

topo

β

таего

- Calculating the ATM cube by lblrtm calculations (one way gaseous transmission spectrum for each pixel)
- Estimating the β image (degree to which aerosols modify gaseous absorption)
- Inverting the parametric relationship to evaluate the τ^{aero} image

As

Suivi spatio-temporel de l'opacité des aérosols

La surface de Mars

- Poussières
- Sables
- Affleurements rocheux
- Givres
- Glace compacte
- 3 ...

WAVANGLET : détection supervisée dans un espace d'ondelettes

Schmitt, Douté & Schmidt TGRS 2007

Régression printanière des dépôts saisonniers aux hautes latitudes sud

Jaune : surfaces

minérales

Bleu : glace d'eau Rose : glace de

dioxyde de carbone

Classification d'unités de terrains (WP1-b : MISTIS-LPG)

- "linear unmixing" ou reconnaissance spectrale supervisés
- ACP, ICA généralisée
- Analyse discriminante de haute dimension (HDDA)

Séparation de sources non supervisée

- Pixel contenant K types de terrains observés suivant la même géométrie
- $a^i(\sum a^i = 1)$

- terrain de type i: réflectance ρ^i , proportion de surface
- Le Problème :
 - Estimation du nombre de sources
 - Extraction des spectres de sources

Extraction des sources

$$a^i \ge 0$$
$$a^i (\sum a^i = 1)$$

- Vertex Component Analysis
- Minimum Simplex Analysis
 Luo et al. IEEE Whispers 2009
- Bayesian Positive Source Separation

Moussaoui Neurocomputing 2008

Unmixing experiments

MVC-NMF: composite map

Sources: Dark, strong bright, weak bright

Analyse physique d'images : inversion de modèles (WP3 : MISTIS – LPG, WP4 : LPG)

- Contraintes :
 - collections massives d'images
 - modèles physiques très variés

- données de grande dimensionnalité (problème de l'espace vide)
- Les spectres observés sont toujours bruités

Problème direct:

déduire les spectres X à partir des paramètres Y connaissant G lci, par modèles de transfert radiatif.

Problème inverse Modèle physique G Paramètres Y Spectres X État physique 0.4 Reflectance 0.0 0.0 Composition chimique texture Granularité 0.1 1.5 3.5 2.5 Wavelength

Problème inverse:

déduire les paramètres Y à partir des spectres X connaissant G

Bernard Michel et al. JGR 2009 Fauvel et al. IEEE Whispers 2009

- Techniques d'apprentissage statistique pour l'inversion des modèles physiques du signal spectral
 - génération de bases de spectres synthétiques
 - apprentissage régularisé des fonctionnelles
 - avec réduction de dim. : GRSIR
 - sans réduction de dim : régression SVM

Etude comparative et Evaluation sur des données réelles (1)

Contamination de la glace de CO2 calotte permanente sud

Poussière

Bernard Michel et al. JGR 2009

	Base adaptée				Grande base				
	RSIR		K-nn	WK-nn	RSIR		K-nn	WK-nn	
	NRMSE	SIRC	NRMSE	NRMSE	NRMSE	SIRC	NRMSE	NRMSE	
Proportion d'eau	0.29	0.92	0.5	0.38	0.63	0.88	0.86	0.6	
Proportion de CO2	0.22	0.99	0.54	0.46	0.4	0.97	0.88	0.68	
Proportion de poussière	0.13	0.99	0.34	0.35	0.31	0.99	0.44	0.41	
Taille des grains d'eau	0.37	0.92	0.39	0.45	0.41	0.8	0.43	0.48	
Taille des grains de CO2	0.19	0.98	0.35	0.46	0.27	0.93	0.53	0.67	

wt ppm

200 900 1600 2300 3000

Granulométrie de la glace CO2 calotte permanente sud

Bernard Michel et al. JGR 2009

	Base adaptée				Grande base			
	RSIR		K-nn	WK-nn	RSIR		K-nn	WK-nn
	NRMSE	SIRC	NRMSE	NRMSE	NRMSE	SIRC	NRMSE	NRMSE
Proportion d'eau	0.29	0.92	0.5	0.38	0.63	0.88	0.86	0.6
Proportion de CO2	0.22	0.99	0.54	0.46	0.4	0.97	0.88	0.68
Proportion de poussière	0.13	0.99	0.34	0.35	0.31	0.99	0.44	0.41
Taille des grains d'eau	0.37	0.92	0.39	0.45	0.41	8.0	0.43	0.48
Taille des grains de CO2	0.19	0.98	0.35	0.46	0.27	0.93	0.53	0.67

30 45 60 75 90 105 120 135 150 165 mm

Perspectives

- Correction affinée des effets atmosphériques sur les données CRISM
- Cartes de propriétés photométriques pour des surfaces à faible relief
- Un système pour la simulation
 - d'images hyperspectrales planétaire VIS et IR
 - de champ d'éclairement et de luminance en scène 3D
- Un algorithme pour l'inversion du modèle direct sur les images hyperspectrales en luminance pour cartographier le facteur de réflectance bidirectionnel (BRF)
- Une nouvelle génération de méthodes de démélange, de classification et d'analyse physique
- Co-registration et analyse d'images multimodales
- Fusion de Model Numérique de Terrain (MNT)