Étude de la surface de Mars par techniques de séparation de source appliquées sur des images hyperspectrales de télédétection

<u>Xavier Ceamanos¹</u>, Sylvain Douté¹, Bin Luo², Frédéric Schmidt³, Gwenaël Jouannic³ and Jocelyn Chanussot²

¹Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), UJF - CNRS ²Gipsa-lab, Grenoble INP ³Laboratoire IDES, Université Paris-Sud - CNRS

Projet Vahiné – ANR/CNES

Institut de Planétologie et d'Astrophysique de Grenoble

Background

- Imaging spectroscopy in planetary sciences
 - Imaging spectrometers around Mars:
 - OMEGA/MEX, 2004
 - CRISM/MRO, 2006
- Increasingly voluminous collections of data...
 - Need for efficient yet accurate analysis algorithms!
 - Unsupervised linear spectral unmixing
 - Decomposition of a hyperspectral image into a few data sources
 - Example on OMEGA data:

Estimated abundances of three physical sources from the South Polar Cap of Mars observed by OMEGA. *Moussaoui 2007*

Geographical linear mixture

Pixel size

X. Ceamanos. 08/04/11

Outline

- Background
- The Russell crater megadune
- Experiments
- Validation
- Conclusions

Coexistence of **seasonal ice** and **dusty dark features** in late winter

Dark defrosting features appear before complete defrosting!

X. Ceamanos. 08/04/11

Coexistence of seasonal ice and dusty dark features in late winter

Coexistence of seasonal ice and dusty dark features in late winter

Appropriate scene for linear unmixing: geographic mixtures may exist within a CRISM pixel!

Compact Reconnaissance Imaging Spectrometer for Mars

- 362 3920 nm (544 channels)
- 15-19 m/pix

X. Ceamanos. 08/04/11

CRISM *frtoooo*42aa

- Late southern winter
- Near IR : 1 2.5 μm
- 18 m/pix
- Region Of Interest

IPAG CRISM pipeline

X. Ceamanos. 08/04/11

Outline

- Background
- The Russell crater megadune
- Experiments
- Validation
- Conclusions

Experiments

Unsupervised spectral unmixing

- Linear mixing model : $X = M \cdot S + e$
 - **X**={**x**₁,...**x**_{Np}} : hyperspectral image
 - $M = \{m_1, \dots, m_{Nc}\}$: mixing matrix -
 - $S = \{s_1, \dots, s_{Nc}\}$: source matrix
 - **e** : additive noise
- Two main steps:
 - 1. Estimation of the number Nc of endmembers
 - ELM (*Luo'og*)
 - 2. Endmember extraction to obtain ${\bf M}$ and ${\bf S}$
 - Selection of four state-of-the-art algorithms

 \mathbf{s}_{n} : abundance map of endmember \mathbf{n}

			5				
		VCA (Nascimento'05)	MVC-NMF (Miao'07)	spatial-VCA (Zortea'09)	BPSS (Moussaoui'o6)		
	First principle:	Geometric	Geometric	Geo. + spatial	Statistical		
	Advantage:	Fast	Less-prevalent endmembers	Homogeneous endmembers	Bayesian framework		
	Drawback:	Less-prevalent endmembers	False spectra	Less-prevalent endmembers	Computational time		
X. Ceama	nos. 08/04/11	Collogue d'inauguration de la Société Française de Télédétection Hyperspectrale					

Experiments

Spectral unmixing of CRISM image *frt42aa*

- 1. Estimation of the number of endmembers
- ELM: **Nc = 6** endmembers
- 2. Endmember extraction
- VCA, BPSS, MVC-NMF & *spatial*-VCA: 6 spectra and 6 abundance maps
- 3. Planetary interpretation
- Similar for all methods
- Defined by **3 physical sources**:
 - Dark source: presence of dark features
 - Strong bright source: high content of CO₂ ice
 - Weak bright source: highest content of CO2 ice
- Nonlinear contributions generate **source splitting effects**

Spectral product: extracted spectra

Spatial product: abundance maps

X. Ceamanos. 08/04/11

X. Ceamanos. 08/04/11

Experiments

Outline

- Background
- The Russell crater megadune
- Experiments
- Validation
- Conclusions

Validation

- Validation of spectral unmixing techniques in the literature?
 - Spectral signatures
 - Reference data bases? Ground truth is very scarce on Mars!
 - Simulated data? **Limitations of the simulation models**!
 - Abundance maps

Validation of spectral unmixing by evaluation of abundance maps using HiRISE imagery

- High Resolution Imaging Science
 Experiment
 - Red band: 550-850 nm; 0.3 m/pix
 - Aboard MRO and coordinated with CRISM!

X. Ceamanos. 08/04/11

HiRISE *PSP_002482_1255* :

A reference abundance map of the dark features can be built from HiRISE imagery!

Detail of the Russell dune observed by the CRISM and the HiRISE instruments. CRISM *frt42aa* in blue, HiRISE *PSP_002482_1255* in green

X. Ceamanos. 08/04/11

HiRISE PSP_002482_1255 :

Detail of the Russell dune observed by the CRISM and the HiRISE instruments. CRISM *frt42aa* in blue, HiRISE *PSP_002482_1255* in green

X. Ceamanos. 08/04/11

Colloque d'inauguration de la Société Française de Télédétection Hyperspectrale

abundance

map may be

used to

validate the

dark source

Ground truth generation

- 1. Registration of CRISM and HiRISE images
- 2. Classification (k-means strategy)
- 3. Pixel counting

Ground truth generation

- 1. Registration of CRISM and HiRISE images
- 2. Classification (k-means strategy)

Pixel counting

X. Ceamanos. 08/04/11

Ground truth generation

- 1. Registration of CRISM and HiRISE images
- 2. Classification (k-means strategy)

3. Pixel counting

X. Ceamanos. 08/04/11

Ground truth generation: detail

HiRISE image PSP_002482_1255_RED

Classification map

Abundance map

Method	VCA		BPSS		MVC-NMF		spatial-VCA	
Indicator	r	ϵ	r	ϵ	r	ϵ	r	ϵ
(1) All pixels	0.68	0.08	0.57	0.10	0.69	0.09	0.50	0.14
(2) Accurate registration	0.73	0.08	0.59	0.09	0.72	0.08	0.56	0.13
(3) Best registration	0.81	0.19	0.80	0.13	0.83	0.14	0.77	0.33

- Misregistration is the main cause of inaccuracy
- MVC-NMF and VCA obtain the best r = 0.83 and $\varepsilon = 0.08$
- *spatial*-VCA does not extract the dark source satisfactorily

X. Ceamanos. 08/04/11

Abundance distribution for all pixels

- BPSS obtains the most accurate abundances along with MVC-NMF
- VCA abundances are underestimated
- General overestimation?

X. Ceamanos. 08/04/11

Abundance distribution for all pixels

- BPSS obtains the most accurate abundances along with MVC-NMF
- VCA abundances are underestimated (unmixing constraints?)
- General overestimation?

X. Ceamanos. 08/04/11

Colloque d'inauguration de la Société Française de Télédétection Hyperspectrale

HiRISE image PSP_002482_12

Abundance distribution for all pixels

BPSS and MVC-NMF results are expected to improve significantly!

X. Ceamanos. 08/04/11

Outline

- Background
- The Russell crater megadune
- Experiments
- Validation
- Conclusions

Conclusions

- 1. Spectral unmixing is suitable for **planetary** exploration
 - A meaningful planetary scenario is revealed
- 2. Validation of abundance maps using an independent **ground truth**
 - Suitability of the linear mixing model
- 3. Intercomparison of endmember extraction algorithms
 - MVC-NMF and BPSS obtained the best results
 - MVC-NMF & VCA may be used as quick look
- Future work:
 - Full inversion fed by unmixing abundances

Thanks for your attention!

<u>Xavier Ceamanos</u>¹, Sylvain Douté¹, Bin Luo², Frédéric Schmidt³, Gwenaël Jouannic³ and Jocelyn Chanussot²

¹Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), UJF - CNRS ²Gipsa-lab, Grenoble INP ³Laboratoire IDES, Université Paris-Sud - CNRS

Projet Vahiné – ANR/CNES

Institut de Planétologie et d'Astrophysique de Grenoble

Science case: CRISM data pipeline

- Artifact correction
 - Stripes + spikes + smile effect
 - CRISM toolkit + LPG algorithms
 - *frt42αα* is very challenging!
- Photometric correction
 - Heterogeneous illumination
 - Digital Terrain Model
 - Noisy DTM for the Russell dune!
- Atmospheric correction
 - Gases & aerosols
 - $I(x;\lambda) = t_{GAS}(x;\lambda)^{\varepsilon(x;\tau_{aero})}R(x;\lambda)$
 - Inaccurate aerosol phase function

Potential non-linear contributions!

X. Ceamanos. 08/04/11

Colloque d'inauguration de la Société Française de Télédétection Hyperspectrale

Scattering Angle (= 180 - Phase Angle

Data pipeline: artifact correction

Spikes

Stripes

- Random column-dependent 1. error bias
- Electronic miscalibration 2.
- Parente 2007 3.

Spikes

- Aberrant error bias affecting 1. single pixels
- Cosmic rays or bit errors 2.
- LPG homemade algorithm 3.

Spectral smile

- Column-dependent artifact 1.
- Non-uniform spectral response 2.
- Ceamanos and Douté 2010 3.

Raw frtooo42aa

CRISM spectral response changes according to column. Ceamanos 2010

Clean frtooo42aa

X. Ceamanos. 08/04/11

Data pipeline: photometric correction

- CRISM data come in *I/F* units
- Reflectance units (*ρ*)

$$\rho(i, e, g) = \frac{I}{\pi \cdot F}$$

$$REFF = \frac{\pi \cdot \rho(i, e, g)}{\cos(i)} = \frac{I}{\cos(i) \cdot F}$$

- General procedure: $i \approx i' = \langle n', s \rangle$
- Digital Terrain Models to determine $i = \langle n, s \rangle$
 - MOLA DTM at 400 m/pix; HiRISE DTM at 1 m/pix
 - **Drawback**: noisy DTM generates bad *i* values
- Assumption: $i \approx \overline{\iota}_{DTM} = 75^{\circ}$

X. Ceamanos. 08/04/11

Data pipeline: atmospheric correction

- Faint atmosphere
 - **Gases**: 98% of CO2 (strong absorption bands in NIR)
 - Aerosols: mineral particles (anisotropic contribution)

•
$$I(x;\lambda) = t_{GAS}(x;\lambda)^{\varepsilon(x;\tau_{aero})}R(x;\lambda)$$

- *t_{GAS}(x)*: gas transmission (radiative transfer model)
- ε(x;τ_{aero}): coupling between aerosols and gases
- $R(x;\lambda)$: surface reflectance
- au_{aero} : aerosol optical thickness
 - estimated at 1 μm
 - $P(\theta,\lambda)$?

Spectral unmixing: number of endmembers

• Eigenvalue Likelihood Maximization (ELM) Luo 2009

- z_l : the difference between the l^{th} sorted eigenvalues of the correlation and covariance matrices
- If z_l corresponds to noise $z_l = 0$, otherwise $z_l > 0$
- the distribution of z_l can be asymptotically modeled by:

$$\begin{array}{ll} z_i \sim \aleph(\mu_i, \sigma_i^2), & \quad i \leq N_c \\ z_i \sim \aleph(0, \sigma_i^2), & \quad i > N_c \end{array}$$

• Likelihood function:

$$\tilde{H}(i) = -\sum_{l=i}^{N_s} \frac{z_l^2}{2\sigma_l^2} - \sum_{l=i}^{N_s} \log \sigma_l,$$

• The number of endmembers is defined such that

$$N_c = \arg\max_i \{\tilde{H}(i)\} - 1.$$

X. Ceamanos. 08/04/11

Ground truth: registration

- Registration of CRISM and HiRISE images is challenging
 - 1. Different spatial resolution => projection of CRISM image onto HiRISE geographic space
 - 2. Different geographic model => Coarse registration + Delanauy triangulation
- Innacuracies caused by manually selected control points

X. Ceamanos. 08/04/11

Ground truth

Classification

- Classification approach based on k-means clustering
 - the **darkest cluster** encompasses the **dark features**
 - results are improved to account for shadows and local photometry

Pixel counting

- Transformation of the classification map into abundance map
 - $a(pix_C) = dark(pix_H) / total(pix_H)$

Dark label counting of two CRISM footprints over the HiRISE classification map

X. Ceamanos. 08/04/11

X. Ceamanos. 08/04/11

Colloque d'inauguration de la Société Française de Télédétection Hyperspectrale

36

Future work

- Full data inversion:
 - Abundance maps can be used as *α priori* information
- Possible defrosting scenario:

Sources: Dark, strong bright, weak bright

- First tests with synthetic data seem to confirm this scenario
- To be tested on a **temporal series** of observations!