Cnes

CENTRE NATIONAL D'ÉTUDES SPATIALES

HYPXIM – a hyperspectral satellite defined for science, security and defence users

Sylvain Michel, Philippe Gamet, Marie-José Lefevre-Fonollosa, Centre National d'Etudes Spatiales, Toulouse, France (@cnes.fr)

HYPXIM-CB : off-the-shelf and more compact

HYPXIM-CB: 2018 timeframe.

Altitude	650 km	
Payload	TMA telescope Φ 150 mm with a dedicated panchromatic channel, prism-based spectrometer Detector VNIR-SWIR 1000 x 256 pixels (off-the-shelf)	
Resolution/Swath	15 m / 15 km	
Spectral bandwidth / resolution	400 – 2500 nm / < 14 nm	
Payload budget	Mass 70 kg, Power 110 W (imaging), Dim. 590 x 640 x 500 mm	
Satellite	Myriade NG 195 kg (at launch)	
Revisit period	Access to any zone within +/-60° in latitude within 30 days, with a roll less than 10° Allowing roll angles up to 40°, revisit time decreases to 3 days (with GSR increased by 50%)	

Introduction

Based on sound mission technical requirements provided by a group of national experts in hyperspectral imagery, CNES has been conducting pre-phase A studies with the support of Astrium and Thales Alenia Space, in non-concurrent engineering. Two mission scenarios were defined :

1) HYPXIM-Challenging aims at finding out the highest possible performance level achievable using a microsatellite platform, with a Basic (HYPXIM-CB) and an Advanced (HYPXIM-CA) option, 2) HYPXIM-Performance goal is to reach a higher spatial resolution and to provide a TIR hyperspectral capability.

HYPXIM mission objectives

GEOSCIENCES **SECURITY & DEFENSE** AT ON Mineralogy Traficabi iversity Cartography detectio r leaf contents Soils degradation chemistry spectroscopy lscape a Environmental Risks Map of $r_{eff}(\mu m)$ URBAN APPLICATIONS **ATMOSPHERE COASTAL ECOSYSTEMS:** Black Carbon maps Biometry, red tide, blooming Materials and t Map of BC (%) Gazes Bathymetry, sedimentology Aerosols Effluents, water quality Intertidal cartography Shadow effects

Radiometry

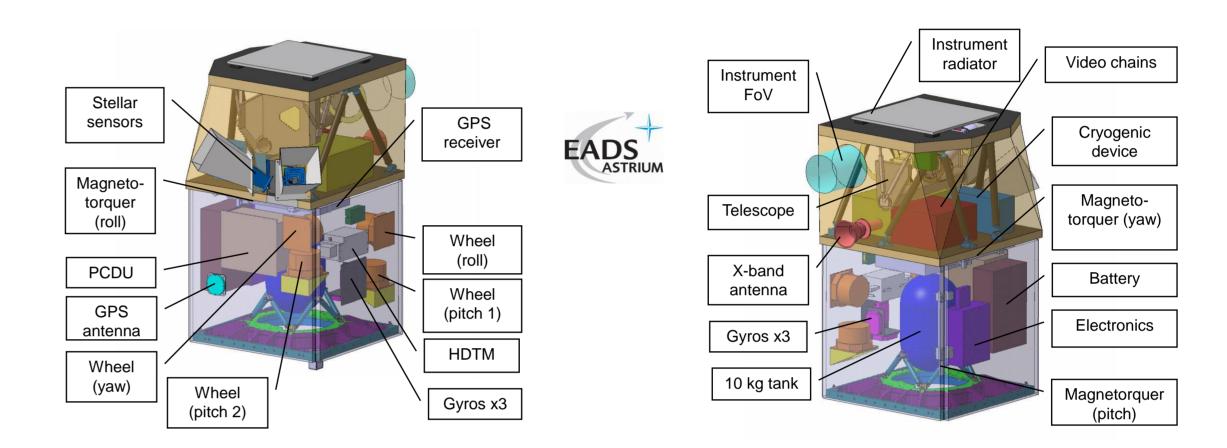
@ PJS Franks

Spectral continuum is required from VIS to SWIR optical domain with a spectral resolution of 10 nanometers. Spectral continuum is also required for TIR with a spectral resolution of 100 nm.

The panchromatic image can be combined with the hyperspectral image so as to enhance spatial resolution.

Ground Spatial Resolution (GSR)

3 classes of needs are identified for VNIR-SWIR domain (0.4 - 2.5 μ m) :


Domain	Spectrum (nm)	Bandwidth δλ (nm)	SNR
VIS	400-700	10	≥250:1
NIR	700-1100	10	≥200:1
SWIR	1100-2500	10	≥100:1
PAN	400-800	400	≥ 90:1
TIR	8000-12000	100	> 100:1

identif

Spectral requirements for HYPXIM mission SNR = Signal-to-Noise Ratio

(with GSR increased by 50%)

Imaging capacity (for one satellite)	280 square images per day
Ground-to-space link	X-band link at 160 Mbps (with ground or mobile stations)
Launcher compatibility	Soyuz
Expected lifetime	5 years (incl. end-of-life operations)

HYPXIM-CB satellite overview [CNES and industrial property - all rights reserved]

HYPXIM-Performance

Altitude	660 km	
Payload	Korsch telescope Φ 430 mm with dedicated panchromatic channel, prism-based spectrometer Detector VNIR-SWIR 2000 x 360 pixels (to be developed) For TIR : telescope Φ 60 mm, prism-based spectrometer Detector 160x35 pixels	
Resolution/Swath	8 m / 16 km For TIR : 100 m / 16 km	
Spectral bandwidth / resolution	h / resolution For TIR : 8 -12 μm / 100-150 nm	
Payload budget	Mass <150 kg, Power (imaging) <350 W	
Satellite	1-ton range	
Revisit period	With +/-20° across-track imaging : 15 days With +/-40° across-track imaging : 3 days	
Imaging capacity (for one satellite)	200 square images per day	
Ground-to-space link	X-band link at 270 Mbps (with ground or mobile stations)	
Launcher compatibility	Soyuz, Vega	
Expected lifetime	10 years (incl. end-of-life operations)	

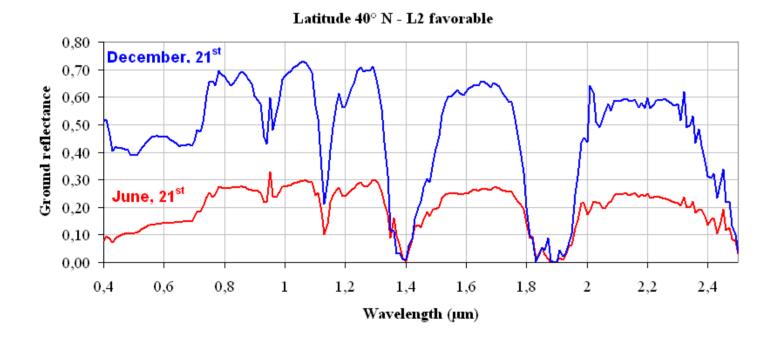
- 20 meters and larger => covered by EnMAP and PRISMA missions,

- 10 to 15 meters,

- 5 to 10 meters.

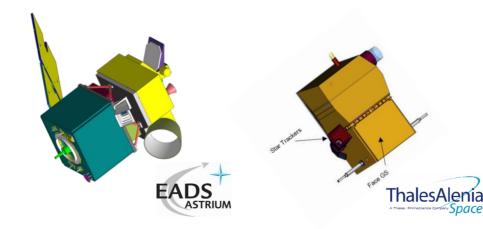
GSR : 50 to 100 meters is required for TIR (8 to 12 μ m).

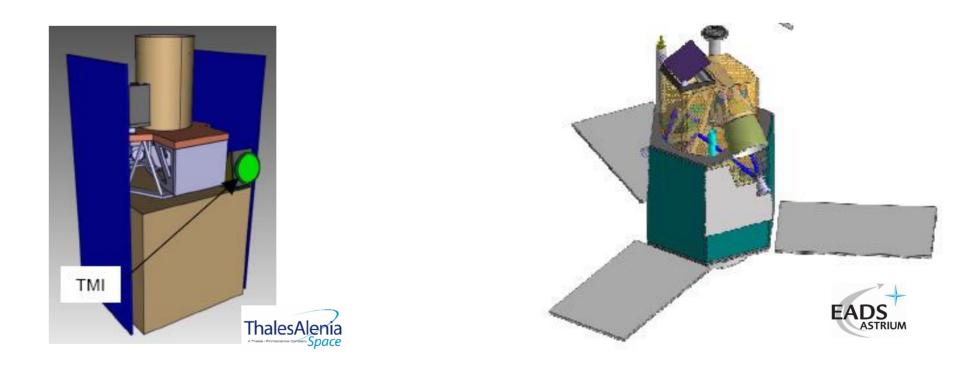
Swath


15 km minimum, up to 30 km.

Revisit period

Daily revisit required for applications (e.g. security & defence) but 3-day revisit period acceptable. Non critical for many applications (geosciences, urban environment, ...).


At-sensor radiances


At-sensor radiances are defined by the scientific and defence mission group [1]. For a better understanding, the at-sensor radiances specifications are converted into observable ground reflectances, according to the observation latitude and the sun-zenithal angle. For instance, at 400 nm, a pre-defined at-sensor radiance (called L2 favorable) is reached on June, 21st for a ground reflectance of 0.1 at 40°N latitude (fig. 1).

HYPXIM-CA : not a micro-challenge

Figure 1 : Ground reflectance providing an at-sensor radiance of L2 favorable, for a site located at 40°N latitude, at 2 dates on June, 21st and December, 21st

HYPXIM-P satellite overviews [CNES and industrial property - all rights reserved]

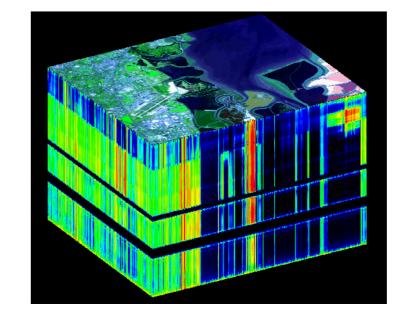
Synthesis

HYPXIM-CA: 2020 timeframe.

Altitude	650 km	
Payload	TMA telescope Φ 175 mm, prism-based spectrometer Detector VNIR-SWIR 2000 x 360 pixels (to be developed)	
Spatial resolution / Swath	15 m / 30 km	
Spectral bandwidth / resolution	400 – 2500 nm / 10 nm	
Payload budget	Mass 65 kg , Power (imaging) 55 W, Dimensions : 670 x 790 x 650 mm	
Satellite	Myriade NG, 195 kg (incl. a 17% margin). Dim. 620 x 600 x 1 327 mm	
Revisit period	At satellite's nadir : 90 days with one satellite / 45 days with two With +/-30° across-track imaging : 3-4 days	
Imaging capacity (for one satellite)	120 square images per day Up to 500 km strip for a single image 800 km between two consecutive square images	
Ground-to-space link	X-band link at 150 Mbps (with ground or mobile stations)	
Launcher compatibility	Soyuz, Vega	
Expected lifetime	5 years (incl. end-of-life operations)	

The HYPXIM concept introduces the next hyperspectral space sensors generation with :

- enhanced spatial resolution from 15 m to 8 m,


- higher revisit frequency available for Security and Defence actors,

- miniaturization allowing a microsatellite to achieve a high-resolution hyperspectral low cost demonstration mission by 2018,

- a new TIR Hyperspectral capability,

- multi-sensors fusion products using on board PAN and TIR data.

HYPXIM missions meet the needs of a wide community of users currently using in situ and highresolution hyperspectral images (airborne, UAV, etc.).

References

[1] X. Briottet, et al.: «HYPXIM: a new hyperspectral sensor combining science/defence applications », Proc. 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Lisbon, Portugal, 2011.