
DETECTION OF NONLINEAR MIXTURES

USING GAUSSIAN PROCESSES:

APPLICATION TO HYPERSPECTRAL

IMAGING

T. Imbiriba⋆ J. C. M. Bermudez⋆ J.-Y. Tourneret†

C. Richard‡1

⋆ Federal University of Santa Catarina, Florianópolis, SC, Brazil
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‡Université de Nice Sophia-Antipolis, CNRS, Nice, France

May 2014

1
This work was partly supported by CNPq under grants Nos 305377/2009-4,

400566/2013-3 and 141094/2012-5, and by the Agence Nationale pour la Recherche, France,
(Hypanema project, ANR-12- BS03-003), and by ANR-11-LABX-0040-CIMI within the
program ANR-11-IDEX-0002-02.



Hyperspectral Images
Mixture Models

GP Regression

Nonlinearity Detector
Fitting error
The test Statistics

Simulations
Synthetic Data
M known
M unknown
Real data

Conclusions

References



Hyperspectral Images

Figure: Remote Sensing: Sun’s radiation reflects on the Earth’s
surface and is captured by an airborne or spaceborne hyperspectral
sensor.



◮ High spectral resolution × poor spacial resolution

◮ One hyperspectral pixel y ➪ Hundreds of contiguous
bands.
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Figure: Hypercube captured by the AVIRIS from the Cuprite field.
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Figure: A hyperspectral pixel is a mixture of the spectral signatures
of the materials (or endmembers) in the area.



Mixture Models

(a) Linear Mixing Models. (b) Bilinear Mixing Models.



◮ Linear mixing model - LMM [1]:

y = Ma+ n, (M is L×R, L ≫ R) (1)

subjected to

R∑

r=1

ar = 1, ar ≥ 0, ∀r ∈ {1, . . . , R}.

and n ∼ N (0L, σ
2
nI).

◮ Many spectral unmixing techniques rely on a specific model
to estimate a and M

◮ Actual nature of mixture ➪ usually unknown

◮ Desirable: a model free nonlinearity detector



◮ General mixing model

y = g(M ) + n. (2)

◮ Proposition:

To model g(M ) as a realization of a GP that describes a
distribution over functions



Gaussian Process Regression

◮ We model (2) as
y = f(M) + n, (3)

where n ∼ N (0, σ2
nI) and f(·) is a smooth latent function

◮ Following [2] and considering the training set {y,M}, the
prior distribution for y can be written as

y ∼ N
(
0,K + σ2

nI
)
, (4)

with K the Gram matrix whose entries Kij = k(mi,mj)
are the kernel (covariance) functions [3] of the inputs mi

and mj (rows of M), and I is the L× L identity matrix



◮ Using the marginalization property [2], we can rewrite (4)
for new inputs M ∗ as

[
y

f∗

]
∼ N

(
0,

[
K + σ2

nI K∗

K⊤
∗ K∗∗

])
(5)

where [K∗]ij = k(m∗i,mj) and [K∗∗]ij = k(m∗i,m∗j)

◮ The multivariate predictive distribution of f∗, or posterior
of f∗, can be obtained by conditioning (5) on the data as

f∗|y,M ,M ∗ ∼ N
(
K⊤

∗

[
K + σ2

nI
]−1

y ,

K∗∗ −K⊤
∗

[
K + σ2

nI
]−1

K∗

) (6)

◮ Using the minimum mean squared error (MMSE) criterion,
the predictor ŷg of f is defined as the mean of the
predictive distribution in (6). Hence,

ŷg = f̂
MMSE

∗ = K⊤
∗

[
K + σ2

nI
]−1

y. (7)



Parameter Estimation

◮ Using the Gaussian kernel for smoothness and
non-informativeness

k(mp,mq) = σ2
f exp

{
−

1

2s2
‖mp −mq‖

2

}
(8)

◮ We estimate the noise variance and the kernel
hyperparameters in θ = {σ2

f , s
2, σ2

n} by maximizing the
marginal likelihood function p(y|M ,θ)

◮ Hence,
θ̂ = argθ max log p(y|M ,θ) (9)



Nonlinearity Detector

◮ Hypothesis test

{
H0 : y = Ma+ n

H1 : y = g(M ) +n
(10)

◮ We assume that M is available or has been estimated from
the image using an endmember extraction technique [5]

◮ We propose to compare the fitting errors resulting from
estimating y using an LS estimator and the GP-based
estimator (7)

◮ Under H0: both estimators should provide good estimates

◮ Under H1: the LS estimation error should be significantly
larger



LS Fitting Error

◮ LS estimation error:

eℓ = y − ŷℓ (11)

where ŷℓ = Mâ is the LS estimator of f

◮ Then, simple calculation yields

eℓ = Py (12)

where P = I −M(M⊤M)−1M⊤ is an L× L projection
matrix of rank ρ = L−R.

GPM Fitting Error
◮ The GP-based estimation error is given by

eg = y − ŷg = y − f̂
MMSE

∗

∣∣∣
M∗=M

= Hy (13)

where H = IL −K⊤
[
K + σ2

nI
]−1

is a real-valued
symmetric matrix of rank L



The Test Statistics

◮ We propose to compare the squared norms of the two
fitting error vectors

For that we need:
◮ determine a test threshold from a given probability of false

alarm (PFA);

◮ a test statistics whose distribution is known or at least can
be approximated

◮ We then propose the test

T =
2‖eg‖

2

‖eg‖2 + ‖eℓ‖2

H1

≶
H0

τ, (14)

where τ is the detection threshold. Equation (14) can be
shown to follow a Beta distribution [6].



Simulations

Synthetic Data
◮ linearly mixed pixels were generated using the LMM (1);

◮ nonlinearly mixed pixels were generated using the
simplified generalized bilinear model (GBM) [7], with a
new scaling that permits the control of the degree of
nonlinearity for each nonlinear pixel generated

◮ The nonlinearly mixed pixels were generated using the
model

y = κMa+ µ+ n (15)

where 0 ≤ κ ≤ 1, µ = γ
∑R−1

i=1

∑R
j=i+1 aiajmi ⊙mj is the

nonlinear term, γ is the parameter that governs the amount
of nonlinear contribution, and ⊙ is the Hadamard product.



◮ Given the parameters M , a, γ and σ2
n, this model

generates samples with same energy and SNR as the LMM
if

Enℓ = ‖κMa+ µ‖2 = Eℓ = ‖Ma‖2

k2Eℓ + 2kEℓµ + Eµ − Eℓ = 0
(16)

κ =
[
−2Eℓµ +

√
4E2

ℓµ − 4Eℓ(Eµ − Eℓ)
]
/2Eℓ (17)

where Eℓ = ‖yℓ‖
2 is the energy of a noiseless linear pixel

(i.e., a⊤M⊤Ma), Eℓµ = y⊤
ℓ µ is the “cross-energy” of the

linear and nonlinear parts, and Eµ = ‖µ‖2 is the energy of
the nonlinear contribution.



Degree of Nonlinearity
◮ The degree of nonlinearity of a pixel is then defined as the

ratio of the nonlinear portion to the total pixel energy

ηd =
2κEℓµ + Eµ

κ2Eℓ + 2κEℓµ + Eµ
. (18)

◮ Synthetic data generation
◮ M composed of R = 3 materials (green grass, olive green

paint and galvanized steel metal) extracted from the
spectral library of the software ENVITM [8]

◮ Each endmember mr has L = 826 bands that were
uniformly decimated to L = 83 bands for simplicity

◮ Abundance vector a = [0.3, 0.6, 0.1]⊤ arbitrarily fixed, and
σ2

n
= 0.0011 chosen to produce an SNR of 21dB for both

linear and nonlinear samples

◮ Simplified GBM with γ = [1, 3, 5] (ηd = [0.22, 0.55, 0.80])
for nonlinearly mixed samples



M known
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Figure: (a) Empirical ROCs for the LS-based detector [7] for 20,000
synthetic samples (10,000 for each hypothesis).
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Figure: (b) Empirical ROCs for the GP detector for 4,000 samples
(2,000 for each hypothesis), for nonlinear samples the simplified GBM
was used with γ = [1, 3, 5] (ηd = [0.22, 0.55, 0.80]).
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Figure: (c) Comparison of the empirical ROCs for GP and LS
detectors for γ = 3 and 4,000 samples.



M unknown

◮ 4 experiments using 5,000 synthetic samples;

◮ the proportion of nonlinearly mixed pixels in the image
varying from 10% to 50%;

◮ random abundance vectors;

◮ M was estimated using the well known vertex component

analysis (VCA) [9].
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Figure: ROCs for different proportions of nonlinearly mixed pixels.

Detection performance degrades as the number of nonlinear
pixels increases and VCA looses accuracy in extracting the
endmembers. Thus, alternatives to VCA must be sought for
nonlinearly-mixed pixels.



Real Data
◮ Indian Pines test site in North-western Indiana [10]

◮ Captured by the AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer), the image has 145× 145 samples,
and has 220 contiguous bands (366 to 2497 nm)

◮ Noisy and water absorption bands were removed resulting
in a total of 200 bands that were decimated to 50 to speed
up simulations

◮ Ground truth map that divides the samples in 17 classes
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(a) Indian Pines.
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(b) Ground Truth.



GP Detection
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Figure: Detection map: black circles indicate the pixels detected as
non-linearly mixed.



Conclusions
◮ A GP-based nonlinearity detection strategy was introduced

to detect nonlinearly mixed pixels in hyperspectral images

◮ The proposed detector does not require the use of a
parametric model for the underlying nonlinear mixing
functions

◮ Simulations using synthetic data indicate that the proposed
detector outperforms a robust method previously presented
in the literature

◮ The detector was also tested on the Indian Pines image
showing that pixels close to the class boundaries and in the
background seem to be nonlinearly mixed

◮ Future work includes joint detection of nonlinear mixtures
and unmixing
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