DE LA RECHERCHE À L'INDUSTRIE

POTENTIEL DE L'INSTRUMENT HYPXIM POUR LA DÉTECTION DE PANACHES DE CO₂ ÉMIS PAR LES INDUSTRIES – ÉTUDE PRÉLIMINAIRE

www.cea.fr

Charles BODIN : 2^{ème} année de l'école d'ingénieur CPE Lyon Rodolphe MARION : encadrant CEA

CONTEXTE

Fin 19^{ème} siècle : révolution industrielle

- → La pollution atmosphérique anthropique augmente
- **CO₂** : avant 280ppmv aujourd'hui 390ppmv

rejets industriels $CO_2 \approx 20\%$ des rejets atmosphériques en France en 2011

→ Besoin de mesurer le CO_2 atmosphérique à l'échelle globale mais aussi à l'échelle locale (site industriel)

Echelle globale : sondeurs (e.g., IASI, AIRS, TES, SCIAMACHY, GOSAT)

1. Haute résolution spectrale

→ « Bonne » détection/mesure de gaz

2. Faible résolution spatiale (km²)

→ Surveillance à l'échelle locale impossible

Echelle locale : imagerie hyperspectrale aéroportée et/ou spatiale

→ Compromis entre les résolutions spatiale (100m²) et spectrale (10nm)

- Général : évaluer les limites de détection pour l'ensemble des gaz dans la gamme [0,4 – 2,5µm] et pour chaque capteur
 Evaluation du seuil de détection lié :
 - → au bruit capteur (signal de référence AVIRIS)

Limites théoriques de détection								
	H ₂ O	CO ₂	O ₃	N ₂ O	СО	CH ₄	O ₂	NO ₂
Quantité minimale de gaz / concentration atmosphérique standard pour être détectable (%)								
AVIRIS	1,05	1,72	7,27	92	348	6,15	1,24	222
Hypxim	2,00	3,44	8,87	185	699	12,3	2,33	268
Débit au point source pour être détectable sur 500m (kt.an ⁻¹)								
AVIRIS	3 256	927	6,60	44,5	39,8	5,80	308 354	68,3.10 ⁻³
Hypxim	6 186	1 855	8,04	89,6	79,8	11,6	578 164	82,7.10 ⁻³

- \rightarrow à la résolution spatiale
- \rightarrow à la résolution spectrale
- \rightarrow à la réflectance du sol

2. Aujourd'hui : évaluer la capacité d'Hypxim à détecter le CO₂

- 2 images AVIRIS : centrales thermiques rejetant du CO₂
- □ Simulation d'images spatiales
 - → atmosphère, résolution spatiale, bruit, résolution spectrale

- Méthodologie
- Outils
- Illustrations
- Résultats
- Conclusions et perspectives

MÉTHODOLOGIE : SIMULATION DE PANACHE ET D'IMAGE SPATIALE

DIRECT

MÉTHODOLOGIE : DÉTECTION DE GAZ

INVERSE

DE LA RECHERCHE À L'INDUSTR

ALGORITHME DE DÉTECTION CTMF

ALGORITHME DE DÉTECTION CTMF

ALGORITHME DE DÉTECTION CTMF

SIMULATEUR D'IMAGES SPATIALES

Ajout de l'atmosphère : $img_{+atm} = img_{aeroportee} \cdot t_{\uparrow} + L_{\uparrow}$

Dégradation spatiale de rapport $r: img_{spatiale} = img_{+atm} * PSF$

Ajout d'un bruit :

- additif gaussien centré de variance σ^2
- σ est fonction du bruit de $img_{aeroportee}$

Dégradation spectrale :

Intégration de chaque pixel de l'image à la sensibilité spectrale indiquée \Rightarrow image hyperspectrale à *M* bandes (*M*<*N*)

SIMULATION D'IMAGES HYPXIM : AJOUT DE L'ATMOSPHÈRE – ILLUSTRATIONS

Equation : $img_{+atm} = img_{aeroportee} \cdot t_{\uparrow} + L_{\uparrow}$

Moss Landing : altitude de l'avion = 3,2km / résolution = 2,7m Mount Storm : altitude de l'avion = 20,2km / résolution = 16,4m

SIMULATION D'IMAGES HYPXIM : AJOUT DE L'ATMOSPHÈRE – ILLUSTRATIONS

Equation : $img_{+atm} = img_{aeroportee} \cdot t_{\uparrow} + L_{\uparrow}$

Moss Landing : altitude de l'avion = 3,2km / résolution = 2,7m Mount Storm : altitude de l'avion = 20,2km / résolution = 16,4m

> Luminance d'un pixel de Mount Storm rouge : aéroportée

SIMULATION D'IMAGES HYPXIM : AJOUT DU BRUIT – ILLUSTRATIONS

$$\sigma_{ajoute} = \sqrt{\sigma_{aeroporte}^2 (\alpha^2 - 1)}$$

DE LA RECHERCHE À L'INDUSTR

CENTRALE THERMIQUE DE MOSS LANDING (AVIRIS)

Jour et heure d'acquisition 28 septembre 2011 20^H08 (GMT)

Géométrie de l'image

Altitude du sol : 17m **Altitude de l'avion/sol : 3,2km Taille pixel = 2,7m** Coordonnées : 36,80N – 121,787W Zénith solaire = 39° Azimut solaire = 184,2°

Atmosphère (ATCOR)

Mid-Latitude Summer Aérosols : Maritime 80km de visibilité $H_2O = 1,84g/cm^2$

Vérité terrain
Emission de CO₂ : 1,8.10⁶ tonnes/an

DE LA RECHERCHE À L'INDUSTRI

CENTRALE THERMIQUE DE MOUNT STORM (AVIRIS)

Jour et heure d'acquisition
02 juillet 2008
17^H48 (GMT)

Géométrie de l'image

Altitude du sol : 990m **Altitude de l'avion/sol : 19,2km Taille pixel = 16,4m** Coordonnées : 39,2N – 79,265W Zénith solaire= 25,5° Azimut solaire = 122,5°

Atmosphère (ATCOR)
Mid-Latitude Summer
Aérosols : Rural 80km de visibilité
H₂O = 1,25g/cm²

Vérité terrain
Emission de CO₂ : 9,5.10⁶ tonnes/an

RÉSULTATS DES DÉGRADATIONS SUCCESSIVES

Moss Landing : Pixel : 2,7m - Altitude avion : 3,2km - Emission de CO₂ : 1,6.10⁶ tonnes/an

originale

ajout atmosphère

dégradation spatiale

modification du RSB

RÉSULTATS DES DÉGRADATIONS SUCCESSIVES

Mount Storm : Pixel : 16,4m - Altitude avion : 19,2km - Emission de CO₂ : 9,5.10⁶ tonnes/an

originale

ajout atmosphère & dégradation spatiale

modification du RSB CEA | 15 MAI 2014 | PAGE 17

CONCLUSIONS ET PERSPECTIVES

Conclusions

- La détection du CO₂ par imagerie hyperspectrale satellite est possible (ajout de l'atmosphère)
- Le CO₂ est détectable jusqu'à environ 8m de résolution spatiale (Hypxim P)
- Au-delà de 15-20m (Hypxim C, EnMAP, Prisma, …), seules les industries rejetant de fortes quantités de CO₂ sont détectées (cf Mount Storm, émission = 9,5.10⁶ tonnes/an)
- Les panaches de CO₂ des sites industriels à forte émission sont détectés avec des RSB HYPXIM, alors que pour des sites de moindre importance il faut un meilleur RSB (aéroporté)

Perspectives

Impact de la résolution spectrale sur les résultats de la détection CTMF
Analyse d'images pour des sites présentant d'autres effluents gazeux que le CO₂
Synthétiser une image hyperspectrale d'une scène (vérité terrain numérique) afin de simuler d'autres images Hypxim et analyser l'inversion du problème