

Etude de l'impact des effets atmosphériques et de la résolution spatiale, sur l'estimation de l'Argile par Imagerie Hyperspectrale Vis-PIR (0.4-2.5µm)

C. Gomez¹, R. Oltra-Carrió², S. Bacha³, P. Lagacherie⁴ and X. Briottet⁵

¹ IRD, UMR LISAH, Montpellier, France
² CESBIO, Toulouse, France
³ CNCT, Tunis, Tunisie
⁴ INRA, UMR LISAH, Montpellier, France
⁵ ONERA, Toulouse, France

Augmentation de l'utilisation des données Hyperspectrales <u>aéroportées</u>

Cartes à Haute résolution spatiale (environ 5 m) pouvant permettre :

- une étude des sols intra-parcellaire
- une utilisation des cartes comme paramètres de modèles environnementaux
- une meilleure cartographie pédologique des zones d'étude

Objectif scientifique

Anticiper le potentiel des futures missions spatiales Hyperspectrales pour la cartographie des propriétés de sol

PRISMA (20 m, 30 m)

Etude de l'impact sur l'estimation d'Argile :

- Des effets atmosphériques
- D'une dégradation de résolution spatiale

Site d'étude

Base de Données

Image aéroportée hyperspectrale AISA-DUAL (2010) :

- 359 bandes spectrales entre 400 et 2500 nm
- Résolution spatiale : 5 m
- 47% de la zone couverte par des sols nus
- 300km² de superficie imagée

129 échantillons de sol récoltés sur des surfaces couvertes par du <u>sol nu</u> au moment de l'acquisition de l'image

Avec Analyse du Taux d'Argile (g/kg)

Base de Données

Image aéroportée hyperspectrale AISA-DUAL (2010) :

- 359 bandes spectrales entre 400 et 2500 nm
- Résolution spatiale : 5 m
- 47% de la zone couverte par des sols nus
- 300km² de superficie imagée

129 échantillons de sol récoltés sur des surfaces couvertes par du <u>sol nu</u> au moment de l'acquisition de l'image

Avec Analyse du Taux d'Argile (g/kg)

Zone d'étude privilégiée :

- Bassin versant de **Kamech (**6.7 km²)
- 43.4% de sol nu
- Forte variation pédologique à courte échelle (succession de bancs de grès et de marne)

Sensibilité aux effets atmo

	Number of Calibration data	R ² cal	RMSEC	Number of Validation data	R ² val	RMSEP	RPD
5m_AISA	90	0,74	86 (g/kg)	30	0,75	86 (g/kg)	2
5m_SAT	90	0,74	86 (g/kg)	30	0,71	94 (g/kg)	1,9

- \Rightarrow Modèles de régression performants (R²_{val}>0,7)
- \Rightarrow Aucune différence de performance

 \Rightarrow A première vue, aucun impact de l'atmosphère

Sensibilité aux effets atmo

Sensibilité à la résolution spatiale

	Number of Calibration data	R ² cal	RMSEC (g/kg)	Number of Validation data	R ² val	RMSEP (g/kg)	RPD	
5m_HYPXIM	62	0,68	99	20	0,71	90	1,9	
10m_HYPXIM	62	0,71	94	20	0,6	105	1,6	
15m_SHALOM	62	0,67	99	20	0,7	91	1,9	F
20m_PRISMA	62	0,72	91,22	20	0,81	73	2,3	
30m_PRISMA-ENMAP	62	0,66	100	20	0,7	90	1,9	J
60m_HyspIRI	67	0,21	156	0				
90m_GSM	65	0,36	135	0				

2 Groupes de capteurs :

- Résolution de 5 à 30m
 - \Rightarrow Modèles de régression performants (R²_{val}>0,6)
 - \Rightarrow Pas de différence significative de performance
- Résolution > 30m
 - \Rightarrow Performances faibles. Pas de cartographie possible

Sensibilité à la résolution spatiale

• Forte variation du Taux d'argile à courte échelle

• A partir de 20m de résolution, les limites pédologiques deviennent floues

Sensibilité à la résolution spatiale

Conclusion

- Pas d'impact des effets atmosphériques après correction par COCHISE
- Performances de cartographie d'Argile similaires de 5 à 30 m de résolution spatiale... avec perte de finesse des limites de bancs de marne à partir de 20m.
- Satellites Hyperspectraux à des résolutions supérieures à 30m ne permettront pas de cartographier les taux d'argile

Perspectives

- Etendre l'étude à d'autres propriétés de sol et d'autres contextes pédologiques.
- Etudier la sensibilité à la résolution spectrale pour l'estimation de propriétés de sol (projet TOSCA 2014-2015 en cours).

Merci de votre attention

Cette recherche a été financé par :

- TOSCA-CNES « HUMPER Mission HYPXIM : Apport de la résolution spatiale de la mission HYPXIM pour l'étude des propriétés pérennes des sols et de leur humidité de surface » 2013-2014.
- ANR-Blanc DIGISOL-HYMED 2009-2012

Modèle de régression (1/2)

Modèle de régression (2/2)

Methodology

Methodology: TOA radiances

$$L_{TOA _ 5m} = \left(\tau_{dir} + \tau_{dif}\right) L_{flight _ AISA _ 5m} + L_{atm}$$

 τ_{dir} : Atmospheric direct transmittance τ_{dif} : Atmospheric diffuse transmittance L_{atm} : Upwelling atmospheric radiance

Direct radiative transfer model **COMANCHE*** (using MODTRAN 4** radiative transfer code)

*Miesch et al., (2005). Direct and inverse radiative transfer csolutions for visible and near-infrared hyperspectral imagery. *IEEE TGRS*, 437(7):1552-1562. **Berk et al., (1999). MODTRAN 4 radiative transfer modeling for atmospheric correction. Opt. Spectr. Tech. and Instr. for Atm. and Space Res. III, 3756:348-253

Methodology: Aggregation process

The new aggregated pixels (L_{TOA_xm}) were obtained by averaging all the pixels values that contributed to the output pixel $(L_{TOA_5m,i})$

$$L_{TOA _ xm} = \frac{1}{N} \sum_{i=1}^{N} L_{TOA _ 5m,i}$$

$$\Omega_{agg} L_{TOA_xm} = \sum_{i=1}^{N} \Omega_{i} L_{TOA_5m,i}$$
$$\Omega_{agg} = N\Omega_{i}$$

 Ω_i is the solid angle corresponding to the IFOV of the original image

 $\Omega_{\rm agg}$ is the solid angle corresponding to the IFOV of the aggregated image

x = 10 m, 15 m, 20 m, 30 m, 60 m, 90 m

Methodology: Aggregation process

The new aggregated pixels (L_{TOA_xm}) were obtained by averaging all the pixels values that contributed to the output pixel $(L_{TOA_5m,i})$

$$L_{TOA _ xm} = \frac{1}{N} \sum_{i=1}^{N} L_{TOA _ 5 m, i}$$

60 m: HyspIRI (USA) 90 m: Global Soil Map project

Methodology: Atmospheric compensation

The atmosphere compensation is done with the inverse radiative transfer model **COCHISE**^{*}, which retrieves the ground reflectance (ρ) considering environmental effects.

Noisy effects are removed by a smoothing filter: $\rho_i^{smooth} = \frac{1}{N} \sum_{j=i-m}^{i+m} \rho_j, \quad m = \frac{N-1}{2}$, N=3

*Miesch et al., (2005). Direct and inverse radiative transfer csolutions for visible and near-infrared hyperspectral imagery. *IEEE TGRS*, 437(7):1552-1562.

Methodology: Identification of bare soil pixels

No bare soil pixels are masked:

-Vegetation: pixels with NDVI>0.2 are masked -Urban: 13 urban areas identified and masked -Water: pixels with $\rho_{0.799\mu m}$ < 8% are masked

Proportion of bare soil GSD 5 20 10 30 60 15 90 (m) % 43.4 42.6 41.5 35.2 32.6 40.6 39

PLSR prediction capability

- •R² calibration et validation
- •RMSE calibration et validation
- •Ratio of Performance to deviation RPD= σ /RMSE_{validation}

RPD<1.4: model with no prediction ability

1.4<RPD<2: model with limited predictive ability

RPD>2: model with good predictive ability

Clay maps comparison

- Visual inspection
- Variograms

