

CARACTÉRISATION DE LA GLACE CO₂ SUR MARS PAR TÉLÉDÉTECTION HYPERSPECTRALE

F. Andrieu (1, 2), F. Schmidt (1, 2), S. Douté (3)

(1) Univ Paris-Sud, Laboratoire GEOPS, UMR8148, Orsay, F-91405; (2) CNRS, Orsay, F-91405;
(3) Institut de Planétologie et d'Astrophysique de Grenoble, CNRS-Univ. Joseph Fourier, France (francois.andrieu@u-psud.fr ; frederic.schmidt@u-psud.fr)

SFPT-GH, Porquerolles, May 15th, 2014

Mars

$$\begin{split} D_{ES} &= 1 \text{ UA} \\ R_E &= 6370 \text{ km} \\ I_{axe} &= 23, 4^{\circ} \\ T &= 288 \text{ K} (15^{\circ}\text{C}) \\ P_{atm} &= 1013 \text{ hPa} \\ \text{Atmosphere : N}_2 (78 \%), \text{ O}_2 \\ (20 \%), \text{ Ar } (1 \%), \dots \end{split}$$

 $D_{MS} = 1,5 \text{ UA}$ $R_{M} = 3390 \text{ km} (0,5 R_{E})$ $I_{axe} = 25,2^{\circ}$ $T = 210 \text{ K} (-63^{\circ}\text{C})$ $P_{atm} = 636 \text{ Pa} (6.10^{-3} P_{T})$ Atmosphere : CO₂ (96 %), Ar (2,0 %), N₂ (1,9 %), ...

Introduction

Seasonal evolution of Mars' polar caps

Introduction

Introduction

Model: Piqueux, 2003 ; Kieffer, 2006

Introduction

Model: Piqueux, 2003 ; Kieffer, 2006

Introduction

Model: Piqueux, 2003 ; Kieffer, 2006

CO₂ gas

Introduction

CO₂ gaz + dust

Model : Piqueux, 2003 ; Kieffer, 2006

Introduction

Model: Piqueux, 2003 ; Kieffer, 2006

Dark spot

Hunner Hunner

Introduction

Spring, MY 28. localisation : -72,01°N ; 179,78°E

- Are spectral data compatible with Kieffer's model ?

- What is the state of CO, ice ?

Introduction

h

Purpose:

- → **Surface state** and its evolution ?
 - Translucent CO₂? Contamination?
- **Observations :**
 - Imaging spectrometers (MRO/CRISM)
 - High resolution imaging (MRO/HiRISE)

Tool:

Radiative transfer inversion

ust

Spectro-imaging instruments on Mars:

OMEGA:

On board Mars Expess (ESA)

(since 2004)

Range : VIS: 500-1000 nm IR: 1000-5200 nm (256 bands)

Resolution :

7 nm/band (VIS) - 14-23 nm/band (IR) 300 m/px to 4 km/px (not circular orbit)

Global Mapping

Spectro-imaging instruments CRISM :

On board Mars Reconaissance Orbiter (NASA) (since 2006)

Range :

VNIR: 362-1053 nm IR: 1002-3920 nm (438 bands)

Resolution :

6.55 nm/band 18.4 m/px at 300 km altitude

Classic full dataset : 544 channels, 640 × 400 px

Targeted studies

Data

Observation :

Method:

1) Atmospheric correction (Douté et al., 2007b)

- Gas
- Aerosols

Method

2) Radiative transfer inversion in the surface

- Synthetic spectral database (improved from Douté & Schmitt, JGR, 1998) CO₂: compact / granular

- Inversion

Method

a) Synthetic spectral library

- Laboratory optical constants for CO₂ and H₂O (Schmitt *et al.*, 1998)

- Estimated optical constants for Martian dust (Shkuratov)

CO₂ ice slab :

- thickness h impurities (Dust, H₂O) :
- mass proportions
- grainsizes

~ 250 000 spectra

Method

a) Synthetic spectral library

- Laboratory optical constants for CO₂ and H₂O (Schmitt *et al.*,1998)

- Estimated optical constants for Martian dust (Shkuratov)

CO, ice slab :

- thickness h impurities (Dust, H₂O) :
- grainsizes
- mass proportions

Optically thick dust : - surface proportion

a) Synthetic spectral library

- Laboratory optical constants for CO₂ and H₂O (Schmitt *et al.*, 1998)

- Estimated optical constants for Martian dust (Shkuratov)

CO₂ ice slab :

- thickness h impurities (Dust, H₂O) :
- grainsizes
- mass proportions

Optically thick dust : - surface proportion

~ 250 000 spectra

Method

Method

b) Inversion

$$L = \exp\left(-\frac{1}{2} \times {}^{t} \left(d_{sim} - d_{mes}\right) \overline{\overline{C}}^{-1} \left(d_{sim} - d_{mes}\right)\right)$$

L : Likelihood function (1 = perfect match)

 d_{sim} and d_{mes} : synthetic and measured spectra

 \overline{C} : covariance matrix : uncertainties

- CRISM noise

- Atmospheric corrections (level + slope)

Results : fits

F. ANDRIEU *et al.* : Inversion for CO_2 ice state on Mars. **Results : impurities** $%_{wt}$

Results : H₂O contents

F. ANDRIEU *et al.* : Inversion for CO_2 ice state on Mars. **Results :** H₂O grainsize

F. ANDRIEU *et al.* : Inversion for CO_2 ice state on Mars. **Results : impurities** $%_{wt}$

Results : surface mix

Results : summary

Presence of a translucent slab

- Slab thickness decreases (consistent with GCMs)
- Impurities proportions : constant
- Water ice grainsize : constant
- Optically thick dust proportion : increases

Not Expected

Expected

Expected

Expected

Conclusion

Conclusions :

- data/model agreement
- Dark features consistent with Kieffer (slab ice)

Perspectives :

- Can be applied to any icy surface (maps)
- Confirm linear mixing values with HiRISE data

Sampling :

Slab thickness : from 0 to 1000 mm

Slab compacity : from 0.9 to 1

Water ice grainsize : from 1 to 10 000 microns

Water ice proportions among impurities : from 0% to 100%

Proportion of sur surface covered by dust (linear mix) : from 0% to 100%

(Piqueux et al., JGR, 2003) (Kieffer et al., Nature, 2006)

Spatial variability :

CRISM measurement

