
Simulation d'images multi/hyperspectrales en zones côtières

Manchun Lei (1, 2), Audrey Minghelli-Roman (1, 2)

- (1) Université de Toulon
- (2) CNRS, LSIS, UMR 7296

Etudes de la couleur de l'eau en zones côtières : les challenges

Complexité des compositions de l'eau:

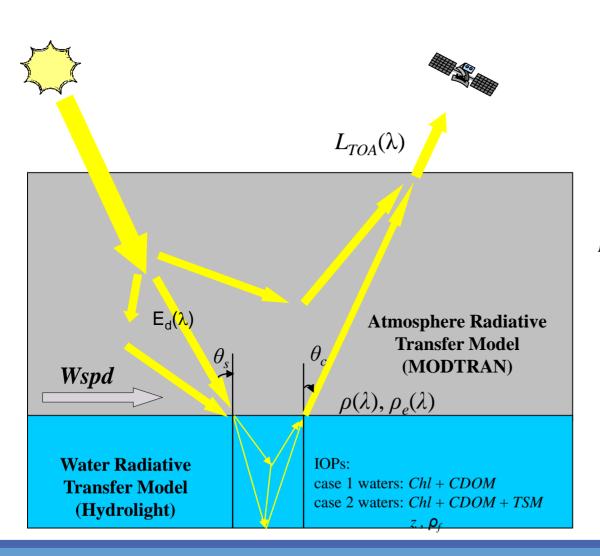
- Phytoplancton, Matière en suspension, Matière dissoute organique colorée
- Fortes dynamiques spatiale et temporelle

Impact du fond

Influence de la réflectance du fond et de la profondeur

Phénomènes accidentels:

 Pollution par émissaires urbains, eutrophisation, blooms d'algues toxiques


Objectifs

Un simulateur basé sur une approche par modélisation totale :

- Modélisation du paysage (composition de l'eau, bathymétrie, type de fond, variation temporelle) - maitrise de la vérité terrain
- Modélisation du transfert radiatif dans l'eau
- Modélisation du transfert radiatif dans l'atmosphère
- Modélisation du capteur (réponse spectrale, SNR, FTM)
- Orbite héliosynchrone ou géostationnaire
- Géométrie d'observation (cible/capteur/soleil)
- Maitrise de tous les paramètres d'entrée et intermédiaires

Pour produire des images réalistes (pas forcément réelles)

Modélisation du transfert radiatif couplé eau/atmosphère

$$L_{TOA} = \frac{E_s \mu_s}{\pi} \left[\rho_{atm} + \frac{T_s}{1 - \rho_e S} (T_{dir} \rho + T_{dif} \rho_e) \right]$$

 $E_{\rm s}$ – extraterrestrial solar irradiance

 μ_s^3 – cosine of sun zenith angle

 ρ_{atm} – atmosphere intrinsic reflectance

S – atmosphere spherical reflectance

 $T_{\rm s}$ – total downwelling transmittance from sun to target

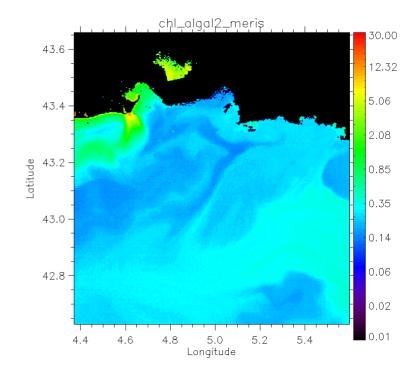
 \vec{T}_{dir} – direct upwelling transmittance

 T_{dif}^{air} – diffuse upwelling transmittance

 ρ – target surface reflectance

 ρ_{a} – environmental surface reflectance

Modèle de paysage

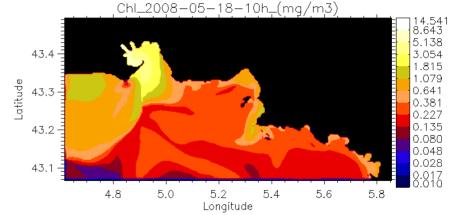

Produit de télédétection: niv2 ou niv3 (MODIS, MERIS, GlobColour)

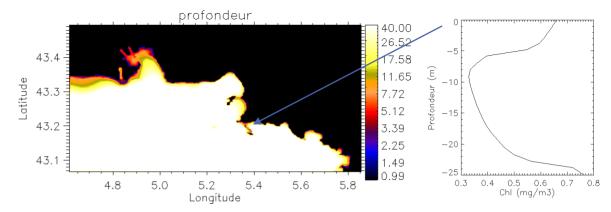
- Ex : MERIS:
 - Chl, TSM, CDOM, W_{spd}

Avantages: Paysage réel, accès facile

Inconvénients: Qualité instable, faible

résolution

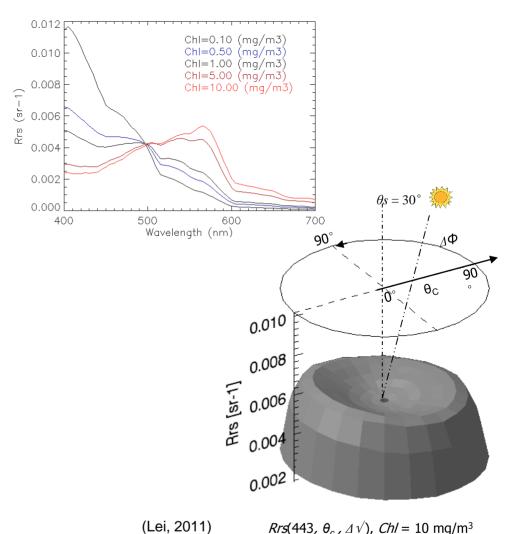

Modèle de paysage


Possibilité de simuler une dynamique temporelle

- Modèle couplé biogéochimique MARS3D-ECO3M (Fraysse, Pinazo, MIO)
 - Chl, 30 niveaux, 1 carte par heure
- Modèle couplé hydro-sédimentaire (Verney, Pairaud, Ifremer)
 - MES, 30 niveaux, 1 carte par heure

Avantages: Tous les paramètres sont connus spatialement et dans le temps

Inconvénients: Réaliste mais pas réelle


Modèle de transfert radiatif dans l'eau

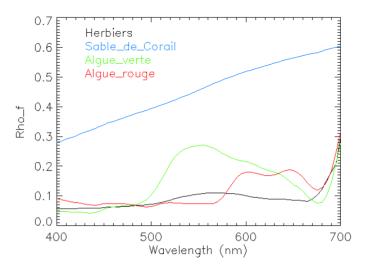
Solution Numérique:

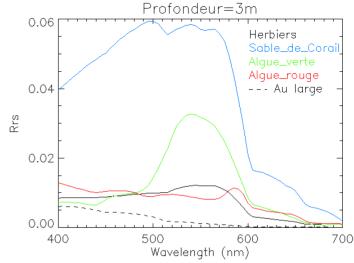
- Code Hydrolight (Mobley, Sundman, 2008)
 - Paramètres d'entrée:
 - pression, ozone, aérosol, couverture nuageuse
 - IOPs ou compositions de l'eau
 - profondeur, réflectance du fond
 - angle solaire
 - Paramètres de sortie:
 - $\bullet \quad L_{w}, L_{u}, L_{d}, E_{u}, E_{d}$
 - Distribution angulaire

Avantages: validé, complet

Inconvénients: temps de calcul

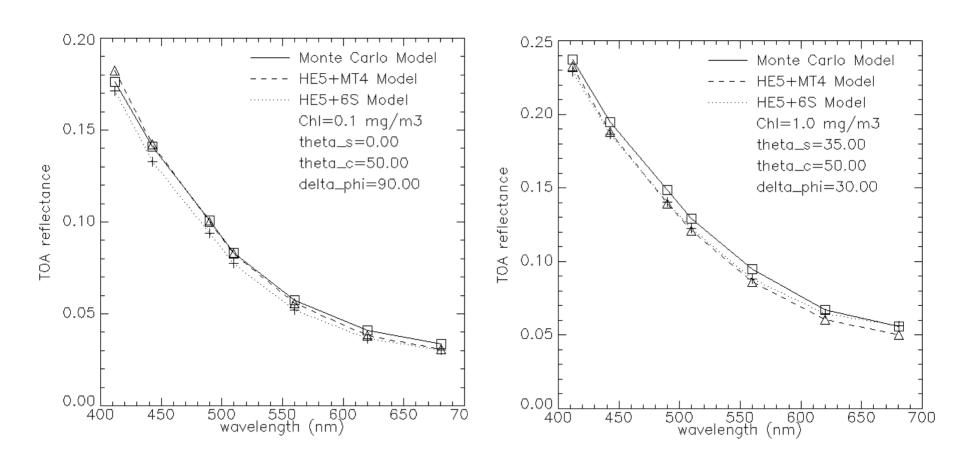
5(115, 0_c, 2 +), e, = 10 mg/1


Modèle de transfert radiatif dans l'eau


Solution Semi-Analytique:

- Model QAA (Lee et al., 1998, 1999)
 - $R_{rs} = \frac{\xi r_{rs}}{1 \Gamma r_{rs}}$
 - $r_{rs} = r_{rs}^C + r_{rs}^B$
 - $r_{rs}^{C} = r_{rs}^{dp} \{1 EXP[-kH(\frac{1}{\mu_{sw}} + \frac{D_{u}^{C}}{\mu_{vw}})]\}$
 - $r_{rs}^B = \frac{1}{\pi} \rho_f EXP[-kH(\frac{1}{\mu_{sw}} + \frac{D_u^B}{\mu_{vw}})]$
 - Paramètres d'entrée: IOPs, profondeur, réflectance du fond, angle solaire et du capteur
 - Paramètre de sortie: R_{rs}

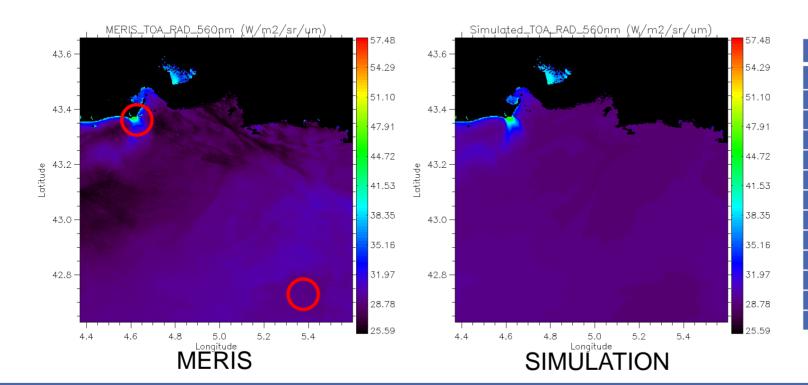
Avantages : Simple, résultat proche d'Hydrolight


Inconvénients: Conditions d'observation limitées

Comparaison

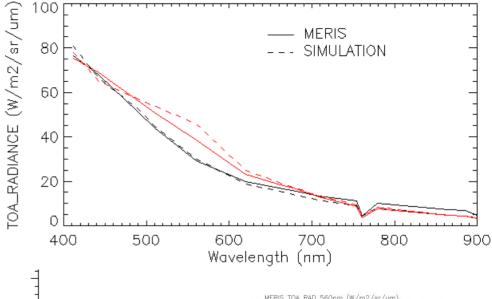
Simulateur VS Code Monte Carlo couplé (Gentilli, LOV)

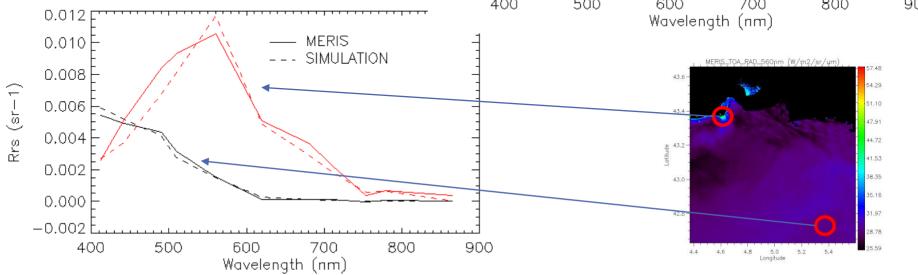
Simulation MERIS


- Site d'étude : Golfe du Lion
- Date de simulation: 18/05/2008
- Propriétés du Capteur: MERIS (LEO, 300m, 15 bandes, 412 – 865nm)
- Carte de compositions de l'eau: MERIS niv2 (Chl, TSM, CDOM)
- Sortie: image de R_{rs} et L_{TOA}

Simulation MERIS

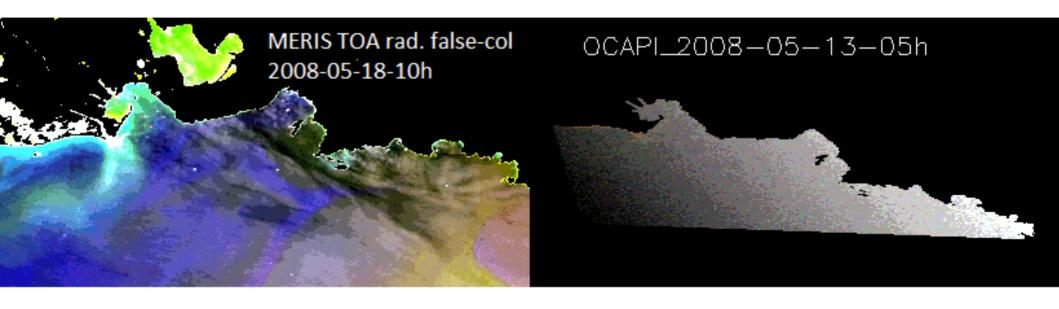
Résultat:


- Corrélation spectrale en luminance TOA : 0.998;
- Corrélation spectrale en R_{rs}: 0.972



λ	RMSE	Erreur relative
(nm)	(W/m2/sr/ um)	(%)
412	2.679	3.43%
442	1.830	2.44%
490	1.111	1.72%
510	1.025	1.89%
560	1.065	3.03%
620	1.116	5.04%
681	1.432	8.22%
709	1.471	9.81%
754	1.581	12.83%
761	0.373	7.34%
779	1.484	13.55%
865	1.813	24.28%

Simulation MERIS et validation


Erreur	eau claire	eau turbide
TOA_Rad	5.8%	6.8%
R_{rs}	7.9%	15.3%

Simulation GeoOCAPI

Projet: Simulation d'Images Géostationnaires en Zones Côtières (SIGZCO) GeoOCAPI : projet de capteur couleur de l'eau (18 bandes) en orbite géostationnaire Financement TOSCA CNES

MeRIS: 2 images GeoOCAPI: n images

11 jours

Conclusions et Perspectives

Les images simulées sont utiles pour:

- Dimensionnement d'un futur capteur
- Préparation de la correction atmosphérique
- Préparation des méthodes d'estimation
- Tester des méthodes de fusion, de classification...

Applications:

- Étude des angles limites (θ s et θ c) pour un satellite géostationnaire (Thèse, UB et TAS)
- Apport de la haute résolution temporelle pour GeoOCAPI (CNES TOSCA)
- Test de fusion entre OLCI (S3) et FCI (MTG) (Thèse, UTLN et TAS)

Merci

manchun.lei@univ-tln.fr
audrey.roman@univ-tln.fr