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Introduction

I HyperSpectral (HS) sensors are characterized by a very high spectral resolution (i.e., a large number of bands), but their spatial resolution is inadequate for many applications
I If a high spatial resolution PANchromatic (PAN) image is available on the same area they can be combined through data fusion [1, 2]
I Several pansharpening approaches have been proposed for the fusion of multispectral (MS) and PAN image which are acquired by the same satellite [3]

Aim of This Study: Analyze the quality of enhanced HS images by using different classical pansharpening approaches

Pansharpening Algorithms

Pansharpening methods are generally divided into two classes: Component Substitution (CS) and Multi-Resolution Analysis (MRA) techniques [3]

Component Substitution

I Based on a forward transformation of the data, substitution of the PAN image and transformation
back in the original space

I The transformation condenses the spatial information common to all the original bands in just one or
few components

I The PAN is substituted only to those components retaining the spatial information
I An histogram matching of the PAN image and the components concerned by the substitution is

performed
I CS methods obtain fused images with high spatial quality but might be affected by spectral distortions
I The following CS techiques are considered in this work:

I Principal Component Analysis (PCA)
I Gram Schmidt mode 1 (GS1)
I Gram Schmidt Adaptive (GSA)

Multi-Resolution Analysis

I Techniques based on the decomposition of each image by iterative applications of a given operator
into a sequence of signals (or pyramid) with decreasingly informative content

I The spatial details (high frequency signals) are located at the first levels in the decomposition
I Once extracted they are injected in the HS data by additive or multiplicative schemes
I Typically the fusion results of MRA techniques are not very sharp but are more spectrally consistent
I The following MRA techniques are considered in this work:

I Smoothing Filter-based Intensity Modulation (SFIM)
I Gaussian Laplacian Pyramid (GLP-MTF) with MTF-matched filter
I Gaussian MTF-matched filter with High Pass modulation (MTF-HPM) injection model

Experimental Results

Hyp+ALI dataset

I HS image acquired by Hyperion 220 spectral bands (from 0.4 to 2.5 µm), 30-meter resolution
I PAN image acquired by ALI with spatial resolution of 10 meters and a spectral coverage form 0.48
µm to 0.69 µm

I Both sensors are mounted on the same platform (no coregistration needed)
I Acquisition over the center of Paris
I In the experiments the sole bands which overlap the spectral range of the panchromatic channel are

used (i.e., from band 14 to 33)

CHRIS+QB dataset

I HS image acquired by CHRIS-Proba spatial resolution of 17 meters and 18 bands with a variable
spectral resolution, increasing from 1.25 nm at 415 nm to 11.25 nm at 1050 nm (no PAN available!)

I PAN image acquired by QuickBird acquires in the Visible-Near InfraRed spectrum with spatial
resolution of 0.6 m

I The size of the PAN image was reduced by using almost ideal low pass filters to obtain a more
suitable scale ratio of 4

I Acquisition over the center of Rome

Validation done at full scale with
I DS index of the Quality without No Reference (QNR) for measuring the spatial fidelity
I Spectral Angle Mapper (SAM) describing the spectral distortion

Full scale analysis: Quantitative results (optimal values are zero)

Algorithm SAM(◦) DS
PCA 0.7928 0.1054
GS1 0.7913 0.1053
GSA 0.8008 0.1062
SFIM 0.4352 0.1666

GLP-MTF 0.6650 0.0619
MTF-HPM 0.6554 0.0593

Hyp+ALI dataset with perfectly coregistered images

Algorithm SAM(◦) DS
PCA 1.3194 0.0597
GS1 1.3159 0.0595
GSA 0.8088 0.2525
SFIM 0.4380 0.5462

GLP-MTF 0.6895 0.3561
MTF-HPM 0.6590 0.3664

Hyp+ALI dataset with 60 meters misalignment (2 HS pixels)

Algorithm SAM(◦) DS
PCA 10.6386 0.2904
GS1 5.4846 0.4768
GSA 4.9747 0.3866
SFIM 3.0762 0.3097

GLP-MTF 4.2274 0.3904
MTF-HPM 3.2355 0.3654

CHRIS+QB dataset with perfectly coregistered images
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Discussion and Conclusion

Hyp+ALI dataset
I MRA family: advantages of Gaussian MTF-matched filters with respect to the Box one (used by

SFIM)
I the HPM injection model (i.e., multiplicative strategy) shows its superiority with respect to detail

addition
I Similar results among the methods in the CS family

CHRIS+QB dataset
I Higher values of SAM and DS w.r.t. Hyp+ALI due to the use of sensors not mounted on the same

platform, different fields of view, temporal incoherence
I Slight advantages in performances of CS methods can be evidenced, thanks to the greater

robustness to misregistration errors
I Better accuracy for the the Box filter used by SFIM w.r.t. the MTF matched Gaussian due to the

preliminary spatial degradation of PAN image
Conclusions
I Superiority of the MRA approaches thanks to the reduction of the spectral distortion, which is very relevant when the number of the band to fuse increases
I CS techniques show a reduced computational burden and the robustness to misregistration errors (see alse the results for a manual shift of the images)
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