

Fusing Multispectral and Hyperspectral Images through Pansharpening

G. Vivone¹, R. Restaino¹, G. Licciardi², M. Dalla Mura², J. Chanussot²

14-16 mai 2014, Porquerolles

¹ Università di Salerno, Italy ² GIPSA-Lab, Grenoble-INP, France

Introduction

• HyperSpectral (HS) sensors are characterized by a very high spectral resolution (i.e., a large number of bands), but their spatial resolution is inadequate for many applications

3e colloque du Groupe SFPT-GH

- ▶ If a high spatial resolution PANchromatic (PAN) image is available on the same area they can be combined through data fusion [1, 2]
- Several pansharpening approaches have been proposed for the fusion of multispectral (MS) and PAN image which are acquired by the same satellite [3]

Aim of This Study: Analyze the quality of enhanced HS images by using different classical pansharpening approaches

Pansharpening Algorithms

Pansharpening methods are generally divided into two classes: Component Substitution (CS) and Multi-Resolution Analysis (MRA) techniques [3]

Component Substitution

- Based on a forward transformation of the data, substitution of the PAN image and transformation back in the original space
- The transformation condenses the spatial information common to all the original bands in just one or few components
- The PAN is substituted only to those components retaining the spatial information
- An histogram matching of the PAN image and the components concerned by the substitution is

Multi-Resolution Analysis

- Techniques based on the decomposition of each image by iterative applications of a given operator into a sequence of signals (or *pyramid*) with decreasingly informative content
- ► The spatial details (high frequency signals) are located at the first levels in the decomposition
- Once extracted they are injected in the HS data by additive or multiplicative schemes
- Typically the fusion results of MRA techniques are not very sharp but are more spectrally consistent
- The following MRA techniques are considered in this work:

performed

- CS methods obtain fused images with high spatial quality but might be affected by spectral distortions
- ► The following CS techiques are considered in this work:
- Principal Component Analysis (PCA)
- ► Gram Schmidt mode 1 (GS1)
- Gram Schmidt Adaptive (GSA)

Experimental Results

Hyp+ALI dataset

- ► HS image acquired by Hyperion 220 spectral bands (from 0.4 to 2.5 μ m), 30-meter resolution
- \blacktriangleright PAN image acquired by ALI with spatial resolution of 10 meters and a spectral coverage form 0.48 μm to 0.69 μm
- Both sensors are mounted on the same platform (no coregistration needed)
- Acquisition over the center of Paris
- In the experiments the sole bands which overlap the spectral range of the panchromatic channel are used (*i.e.*, from band 14 to 33)

Validation done at full scale with

- D_S index of the Quality without No Reference (QNR) for measuring the spatial fidelity
- Spectral Angle Mapper (SAM) describing the spectral distortion

Algorithm	SAM(°)	D_S
PCA	0.7928	0.1054
GS1	0.7913	0.1053
GSA	0.8008	0.1062
SFIM	0.4352	0.1666

Full scale analysis: Quantitative results (optimal values are zero)

Algorithm	SAM(°)	D_S
PCA	1.3194	0.0597
GS1	1.3159	0.0595
GSA	0.8088	0.2525
SFIM	0.4380	0.5462

Smoothing Filter-based Intensity Modulation (SFIM)

- ► Gaussian Laplacian Pyramid (GLP-MTF) with MTF-matched filter
- ► Gaussian MTF-matched filter with High Pass modulation (MTF-HPM) injection model

CHRIS+QB dataset

- HS image acquired by CHRIS-Proba spatial resolution of 17 meters and 18 bands with a variable spectral resolution, increasing from 1.25 nm at 415 nm to 11.25 nm at 1050 nm (no PAN available!)
- PAN image acquired by QuickBird acquires in the Visible-Near InfraRed spectrum with spatial resolution of 0.6 m
- The size of the PAN image was reduced by using almost ideal low pass filters to obtain a more suitable scale ratio of 4
- Acquisition over the center of Rome

Algorithm	SAM(°)	D_S
PCA	10.6386	0.2904
GS1	5.4846	0.4768
GSA	4.9747	0.3866
SFIM	3.0762	0.3097

GLP-MTF0.66500.0619MTF-HPM0.65540.0593Hyp+ALI dataset with perfectly coregistered images

GLP-MTF0.68950.3561MTF-HPM0.65900.3664Hyp+ALI dataset with 60 meters misalignment (2 HS pixels)

GLP-MTF4.22740.3904MTF-HPM3.23550.3654CHRIS+QB dataset with perfectly coregistered images

Discussion and Conclusion

Hyp+ALI dataset

MRA family: advantages of Gaussian MTF-matched filters with respect to the Box one (used by

CHRIS+QB dataset

Higher values of SAM and D_S w.r.t. Hyp+ALI due to the use of sensors not mounted on the same

- SFIM)
- the HPM injection model (i.e., multiplicative strategy) shows its superiority with respect to detail addition
- Similar results among the methods in the CS family

- platform, different fields of view, temporal incoherence
- Slight advantages in performances of CS methods can be evidenced, thanks to the greater robustness to misregistration errors
- Better accuracy for the Box filter used by SFIM w.r.t. the MTF matched Gaussian due to the preliminary spatial degradation of PAN image

Superiority of the MRA approaches thanks to the reduction of the spectral distortion, which is very relevant when the number of the band to fuse increases CS techniques show a reduced computational burden and the robustness to misregistration errors (see alse the results for a manual shift of the images)

References

Conclusions

A. Garzelli, L. Capobianco, L. Alparone, B. Aiazzi, and S. Baronti, "Hyperspectral pansharpening based on modulation of pixel spectra," in *Proc. of WHISPERS*, 2010, pp. 1–4.
G. Licciardi, M. M. Khan, J. Chanussot, A. Montanvert, L. Condat, and C. Jutten, "Fusion of hyperspectral and panchromatic images using multiresolution analysis and nonlinear PCA band reduction," *EURASIP J. Adv. Sig. Pr.*, no. 1, pp. 1–17, Sep 2012.
B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, "Twenty-five years of pansharpening: A critical review and new developments," in *Signal and Image Processing for Remote Sensing*, C. Chen, Ed. CRC, 2012, pp. 533–548.

