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Introduction on Spectral-spatial Classification

Optical remote sensing
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Introduction on Spectral-spatial Classification

Exploiting Spatial Features

Example: image classification

True color image Spectral features Spectral+{-spatial features
(OA 70.42%) (OA 89.89%)

When dealing with high geometrical resolution, the use of spatial features

increases the discrimination of the thematic classes leading to more accurate
results.
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Attribute Profiles

Attribute Profiles

Definition

AP(f) = {¢n(f)77¢1(f)7f7’yl(f)777”(.)0)}7

being ¢ and v attribute thickening and attribute thinning operators, respectively.
o

. |
Pan. Image
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Attribute Profiles

Examples of APs
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Attribute Profiles

Example of APs (Particulars)

&

¢T(f) M. Inertia A = 0.2
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Attribute Profiles

Example of APs (Particulars)

Panchromatic image (f)
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Attribute Profiles

Example of APs (Particulars)
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Attribute Profiles

Example of APs (Particulars)
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Attribute Profiles

Example of APS (Partlculars)

+T(f) M. Inertia A = 0.5
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Attribute Profiles

Example of APs (Particulars)

o

'yT(f) M. Inertia A = 0.8
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Attribute Profiles

Extended Attribute Profile

e Principal Component Analysis is used for reducing the dimensionality.

e On each first n principal component (PC) extracted from the hyperspectral
image, a AP is computed.

o The APs are then concatenated for obtaining an Extended Attribute Profile.

Extended Attribute Profile (EAP)?

EAP = {AP(PC;), AP(PCy), ..., AP(PCy)}.

y
1 M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended profiles with
morphological attribute filters for the analysis of hyperspectral data,” International Journal of
Remote Sensing, vol. 31, no. 22, pp. 5975-5991, Nov. 2010.
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Attribute Profiles

Extended Attribute Profile

Architecture
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Attribute Profiles

Extended Multi-Attribute Profile

Extended Multi-Attribute Profile

EMAP = {EAP,,,EAP',,,...,EAP’, }
with a; a generic attribute and EAP’ = EAP\{PCy,...,PCy}.

Architecture

Hyper. Image
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Sparse Representation Classification

Sparse Representation

Sparse Representation

o Principle a sample (i.e., a pixel) can be represented by a (sparse) linear
combination of atoms from a training dictionary
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Sparse Representation Classification

Sparse Representation

Sparse Representation

o Principle a sample (i.e., a pixel) can be represented by a (sparse) linear
combination of atoms from a training dictionary

o Dictionary A = {x1,...,%,} € R"*! with n samples of | dimensions of ¢
distinct classes as A = [Ay,..., A.], where Ay = {Xk,,..., Xk, } (i€, Ak
holds the samples of class k in its columns, nx is the number of samples in
Ay and Y37 ng=n)
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Sparse Representation Classification

Sparse Representation

Sparse Representation

o Principle a sample (i.e., a pixel) can be represented by a (sparse) linear
combination of atoms from a training dictionary

o Dictionary A = {x1,...,%,} € R"*! with n samples of | dimensions of ¢
distinct classes as A = [Ay,..., A.], where Ay = {Xk,,..., Xk, } (i€, Ak
holds the samples of class k in its columns, n is the number of samples in
Ay and Y37 ng=n)

o Let x be a test sample which can be appropriately represented by a linear
combination of the atoms (training samples) in the dictionary A:

T
X R X100 + X2 + ¢+ XnQp = [X1X2 ... Xyl .. an] = Aate
h _ T T1T -« 0 o 0
where o =[], ..., ;| is an n-dimensional sparse vector (i.e., most
elements of a are zero), a; is the vector of regression coefficients associated
with class ¢ and e is the representation error
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Sparse Representation Classification

Sparse Representation

Sparse Representation

o Principle a sample (i.e., a pixel) can be represented by a (sparse) linear
combination of atoms from a training dictionary

o Dictionary A = {x1,...,%,} € R"*! with n samples of | dimensions of ¢
distinct classes as A = [Ay,..., A.], where Ay = {Xk,,..., Xk, } (i€, Ak
holds the samples of class k in its columns, n is the number of samples in
Ay and Y37 ng=n)

o Let x be a test sample which can be appropriately represented by a linear
combination of the atoms (training samples) in the dictionary A:

T
X R X100 + X2 + ¢+ XnQp = [X1X2 ... Xyl .. an] = Aate
h _ T T1T -« 0 o 0

where o =[], ..., ;| is an n-dimensional sparse vector (i.e., most
elements of a are zero), a; is the vector of regression coefficients associated
with class ¢ and e is the representation error

o Central assumption x* (belonging to class 7) is well approximated by Ao,
i.e., oy =0, for j # 1.
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Sparse Representation Classification

Sparse Representation

Finding o

o The sparse vector o can be estimated by solving the following optimization
problem (NP hard):

& =argmin ||allo subject to [|x; — A2 <9,

where ||a|lo denotes the £o-(pseudo) norm which counts the nonzero
components in the coefficient vector and 0 is an error tolerance.
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Sparse Representation Classification

Sparse Representation

Finding o
o The sparse vector o can be estimated by solving the following optimization
problem (NP hard):
& =argmin ||allo subject to [|x; — A2 <9,
where ||a|lo denotes the £o-(pseudo) norm which counts the nonzero
components in the coefficient vector and 0 is an error tolerance.
e This can be approximated by a convex problem (and solved using linear

programming) by replacing £o-norm with the ¢;-norm:

& =argmin ||e|1 subject to ||x; — Aall2 <4,

M. Dalla Mura (GIPSA-Lab) Hyperspectral SRC of APs SFPT-GH 2014 13 / 21



Sparse Representation Classification

Sparse Representation

Finding o

o The sparse vector o can be estimated by solving the following optimization
problem (NP hard):

& =argmin ||allo subject to [|x; — A2 <9,

where ||a|lo denotes the £o-(pseudo) norm which counts the nonzero
components in the coefficient vector and 0 is an error tolerance.

e This can be approximated by a convex problem (and solved using linear
programming) by replacing £o-norm with the ¢;-norm:

& =argmin ||e|1 subject to ||x; — Aall2 <4,
o This is equivalent to the unconstrained optimization problem:
.1 2
min o ||x; — Aallz + 7,

where the parameter 7 is a Lagrange multiplier which balances the tradeoff
between the reconstruction error and the sparse solution
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Sparse Representation Classification

Classification

@ Once « is estimated, each sample is assigned to the class that shows the least
residual in the reconstruction (i.e., the atoms in the dictionary belonging to
that class are contributing most to the representation of the sample)

—

class(x;) = arg min ||x; — A ;2.
JE {1 goocg@l;
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Experimental Results Simulated data

Synthetic image
o The simulated image is generated with a size of N = 128 x 128 pixels made
up of linear mixtures between 3 components as follows:
(&
X; = kasf + ny,
k=1

where s = {s1,...,sn} is the fractional abundances matrix which is
generated according to a uniform distribution over the simplex.
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Experimental Results Simulated data

Synthetic image

o The simulated image is generated with a size of N = 128 x 128 pixels made
up of linear mixtures between 3 components as follows:

c
k
X = E mys; + nj,
k=1

where s = {s1,...,sn} is the fractional abundances matrix which is
generated according to a uniform distribution over the simplex.

e m = {m;, my, m3} is the mixing matrix where the spectral signatures used
were randomly obtained from the United States Geological Survey (USGS)
digital library®.

“http://speclab.cr.usgs.gov
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Experimental Results Simulated data

Synthetic image

o The simulated image is generated with a size of N = 128 x 128 pixels made
up of linear mixtures between 3 components as follows:

c
k
X = g mys; + nj,
k=1

where s = {s1,...,sn} is the fractional abundances matrix which is
generated according to a uniform distribution over the simplex.

e m = {m;, my, m3} is the mixing matrix where the spectral signatures used
were randomly obtained from the United States Geological Survey (USGS)
digital library®.

o Zero-mean Gaussian noise with variance oI, i.e., n; ~ (0, 021) is added to
our simulated image (o = 0.3182 approx. SNR 5dB)

“http://speclab.cr.usgs.gov
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Experimental Results Simulated data

Synthetic image

o The simulated image is generated with a size of N = 128 x 128 pixels made
up of linear mixtures between 3 components as follows:

c
k
X = g mys; + nj,
k=1

where s = {s1,...,sn} is the fractional abundances matrix which is
generated according to a uniform distribution over the simplex.

e m = {m;, my, m3} is the mixing matrix where the spectral signatures used
were randomly obtained from the United States Geological Survey (USGS)
digital library®.

o Zero-mean Gaussian noise with variance oI, i.e., n; ~ (0, 021) is added to
our simulated image (o = 0.3182 approx. SNR 5dB)

o Spectra highly mixed (all pixels have abundance fractions less than 0.5)

“http://speclab.cr.usgs.gov
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Experimental Results Simulated data

Synthetic image

@ ®) (©

o (a) Image of class labels for a simulated data set made up with highly mixed
pixels and noise

o (b) Sparse classification based on the original spectral information
(OA=89.34%)

e (c) Sparse classification based on EMAPs (OA=99.11%)
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Experimental Results Simulated data

Synthetic image
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Sparse representation of two different test samples from a simulated
hyperspectral scene in spectral and EMAP space
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Experimental Results Real data
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Sparse representation of a sample from a highly mixed class
(building-grass-tree-drives, class number 15) of the AVIRIS Indian Pines data in
spectral and EMAP space.
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Experimental Results Real data
Numerical results

Class. Train | Test | SVMor; [ SVMEnsap | SVMCKiotn | SVMCKori | SVMCK a4 | OMPori |OMPEy AP | KNNori | KNNE AP | SUDSALori | SUDSALEasap | SUNSALE M ap (T = 0)
Alfalfa 3 43 54.88 94.88 88.84 79.09 94.88 3442 96.51 7441 88.14 51.86 97.67 83.95
orn-notill 14 1414 4263 68.06 60.19 5092 69.34 39.05 7223 40.62 60.58 40.83 75.57 15.57
Corn-min 8 822 29.53 60.22 64.57 4124 74.04 27 66.34 28.44 54.45 2221 68.22 26.13
Corn 3 234 17.65 3573 3192 3538 4427 8.63 51.92 2452 26.03 12.52 47.01 21.35
Grass/Pasture 5 478 57.51 74.10 69.27 65.69 76.86 55.67 7429 59.12 67.51 58.28 7174 41.90
Grass/Trees 7 723 81.02 91.59 91.27 83.91 93.68 7267 88.73 72.13 9213 83.90 95.09 3398
Grass/Pasture-mowed | 3 25 86.40 95.20 93.20 96.40 97.60 61.60 98.00 88.00 95.20 71.60 96.80 87.60
Hay-windrowed 5 473 6237 94.52 82.85 73.81 95.58 46.70 99.98 67.51 90.95 65.60 100 71.21
Oats 3 17 70.59 85.88 84.71 8118 89.41 44.12 97.06 58.82 89.41 59.41 91.76 58.24
Soybeans-notill 10 | 962 39.73 75.60 66.65 5119 79.59 25.34 83.37 43.67 66.67 29.18 85.25 26.72
Soybeans-min 25 |2430| 7331 87.37 80.88 7240 88.06 5428 88.61 60.91 79.85 64.12 92.26 1529
Soybeans-clean 6 587 2172 57.68 4193 29.40 59.93 18.94 70.49 27.10 4320 18.93 68.18 4254
‘Wheat 3 202 87.28 96.44 93.66 90.54 9797 7287 98.61 79.80 97.67 8119 99.50 76.78
‘Woods 13 [1252| 84.03 97.32 9173 85.93 96.45 68.95 95.67 75.80 89.03 8272 98.43 6.88
Bldg-Grass-Trees 4 382 17.38 65.16 57.57 3482 74.48 2026 75.68 18.40 61.99 17.07 77.88 35.68
Stone-steel towers. 3 90 70.67 86.89 89.44 89.22 98.78 65.11 95.11 80.33 93.78 85.44 9544 8111
O0A 56.73 79.07 73.08 6295 81.96 45.68 82.70 52.94 7232 5258 84.90 26.71
AA 56.04 79.17 7429 66.32 83.18 44.46 84.54 56.23 74.79 53.18 85.05 45.81
K 49.88 76.08 69.29 5752 7947 37.82 80.26 46.33 68.43 45.40 82.76 19.24
‘Time(s) 0.49 1339 16.52 6.07 19.28 29.01 35.94 035 13.28 4.93 18.03 16.39

Overall accuracy (OA), average accuracy (AA), kappa statistic (k) and class

individual accuracies ([%]) obtained by different classifiers on the AVIRIS Indian

Pines data (here, we use a total of 115 samples for training, which represents
about 1% of the available labeled data for the scene).
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Experimental Results Real data

Classification maps
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Classification results obtained by different classifiers for the AVIRIS Indian Pines
scene (using a total of 115 samples for training, which represents about 1% of the
available labeled data for the scene).
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Conclusion

Conclusion

o We have proposed a new classification strategy that integrates sparse
representations and extended multi-attribute profiles (EMAPS) for
spatial-spectral classification of remote sensing data.

o The proposed approach can appropriately exploit the inherent sparsity
present in EMAPs in order to provide state-of-the-art classification results.

@ This is mainly due to the fact that the samples in EMAP space can be
approximately represented by a few number of atoms in the training
dictionary after solving the optimization problem, while the same samples
could not be represented in the original spectral space with the same level of
sparsity.

o A comparison with state-of-the-art classifiers shows very promising results
for the proposed approach, particularly when a very limited number of
training samples is available.
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