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Introduction on Spectral-spatial Classification

Optical remote sensing

Panchromatic
One greylevel per
pixel
Large spectral
range

Multispectral
2-10 bands
limited spectral
info

Hyperspectral
ten-hundreds of
narrow bands
detailed spectral
info
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Introduction on Spectral-spatial Classification

Exploiting Spatial Features

Example: image classification

True color image Spectral features
(OA 70.42%)

Spectral+spatial features
(OA 89.89%)

When dealing with high geometrical resolution, the use of spatial features
increases the discrimination of the thematic classes leading to more accurate
results.
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Attribute Profiles

Attribute Profiles

Definition

AP(f) := {φn(f), . . . , φ1(f), f, γ1(f), . . . , γn(f)} ,

being φ and γ attribute thickening and attribute thinning operators, respectively.

AP

Thickening Profile

Thinning Profile

φT1

...

φTL

γT1

...

γTL

Pan. Image

. . . . . .
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Attribute Profiles

Examples of APs

φT3

λ3 = 1849

Area (A)
Tn = A > λn

φT2

λ2 = 625

φT1

λ1 = 49

φT0 = γT0 = f

λ0 = 0

γT1

λ1 = 49

γT2

λ2 = 625

γT3

λ3 = 1849

λ3 = 0.8

Moment of Inertia (I)
Tn = I > λn

λ2 = 0.5 λ1 = 0.2 λ0 = 0 λ1 = 0.2 λ2 = 0.5 λ3 = 0.8

λ3 = 70

Stand. Dev. (S)
Tn = S > λn

λ2 = 40 λ1 = 10 λ0 = 0 λ1 = 10 λ2 = 40 λ3 = 70

Thickening Profile Thinning Profile
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Attribute Profiles

Example of APs (Particulars)

Panchromatic image (f) φT (f) Area λ = 49

φT (f) M. Inertia λ = 0.2 φT (f) Std λ = 10
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Attribute Profiles

Example of APs (Particulars)

Panchromatic image (f) φT (f) Area λ = 625

φT (f) M. Inertia λ = 0.5 φT (f) Std λ = 40
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Attribute Profiles

Example of APs (Particulars)

Panchromatic image (f) φT (f) Area λ = 1849

φT (f) M. Inertia λ = 0.8 φT (f) Std λ = 70
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Attribute Profiles

Example of APs (Particulars)

Panchromatic image (f) γT (f) Area λ = 49

γT (f) M. Inertia λ = 0.2 γT (f) Std λ = 10
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Attribute Profiles

Extended Attribute Profile

Principal Component Analysis is used for reducing the dimensionality.
On each first n principal component (PC) extracted from the hyperspectral
image, a AP is computed.
The APs are then concatenated for obtaining an Extended Attribute Profile.

Extended Attribute Profile (EAP)1

EAP = {AP(PC1),AP(PC2), . . . ,AP(PCn)}.

1 M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended profiles with
morphological attribute filters for the analysis of hyperspectral data,” International Journal of
Remote Sensing, vol. 31, no. 22, pp. 5975–5991, Nov. 2010.
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Attribute Profiles

Extended Attribute Profile

Architecture
EAP

AP1

AP2

APn

PC1

AP

PC2

AP

...

PCn

AP

PCA

Hyper. Image

. . .
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Attribute Profiles

Extended Multi-Attribute Profile

Extended Multi-Attribute Profile

EMAP = {EAPa1 ,EAP′a2 , . . . ,EAP′am}

with ai a generic attribute and EAP′ = EAP\{PC1, . . . ,PCn}.

Architecture

EMAP

EAP1

EAP2

EAPn

EAP

EAP

...

EAP

Hyper. Image

. . .
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Sparse Representation Classification

Sparse Representation

Sparse Representation
Principle a sample (i.e., a pixel) can be represented by a (sparse) linear
combination of atoms from a training dictionary
Dictionary A = {x1, . . . ,xn} ∈ Rn×l with n samples of l dimensions of c
distinct classes as A = [A1, . . . ,Ac], where Ak = {xk1 , . . . ,xknk

} (i.e., Ak

holds the samples of class k in its columns, nk is the number of samples in
Ak and

∑c
k=1 nk = n)

Let x be a test sample which can be appropriately represented by a linear
combination of the atoms (training samples) in the dictionary A:

x ≈ x1α1 + x2α2 + · · ·+ xnαn = [x1x2 . . .xn][α1α2 . . . αn]
T = Aα+ ε

where α = [αT1 , . . . ,α
T
c ]
T is an n-dimensional sparse vector (i.e., most

elements of α are zero), αi is the vector of regression coefficients associated
with class i and ε is the representation error
Central assumption xi (belonging to class i) is well approximated by Aiαi,
i.e., αj = 0, for j 6= i.

M. Dalla Mura (GIPSA-Lab) Hyperspectral SRC of APs SFPT-GH 2014 12 / 21



Sparse Representation Classification

Sparse Representation

Sparse Representation
Principle a sample (i.e., a pixel) can be represented by a (sparse) linear
combination of atoms from a training dictionary
Dictionary A = {x1, . . . ,xn} ∈ Rn×l with n samples of l dimensions of c
distinct classes as A = [A1, . . . ,Ac], where Ak = {xk1 , . . . ,xknk

} (i.e., Ak

holds the samples of class k in its columns, nk is the number of samples in
Ak and

∑c
k=1 nk = n)

Let x be a test sample which can be appropriately represented by a linear
combination of the atoms (training samples) in the dictionary A:

x ≈ x1α1 + x2α2 + · · ·+ xnαn = [x1x2 . . .xn][α1α2 . . . αn]
T = Aα+ ε

where α = [αT1 , . . . ,α
T
c ]
T is an n-dimensional sparse vector (i.e., most

elements of α are zero), αi is the vector of regression coefficients associated
with class i and ε is the representation error
Central assumption xi (belonging to class i) is well approximated by Aiαi,
i.e., αj = 0, for j 6= i.

M. Dalla Mura (GIPSA-Lab) Hyperspectral SRC of APs SFPT-GH 2014 12 / 21



Sparse Representation Classification

Sparse Representation

Sparse Representation
Principle a sample (i.e., a pixel) can be represented by a (sparse) linear
combination of atoms from a training dictionary
Dictionary A = {x1, . . . ,xn} ∈ Rn×l with n samples of l dimensions of c
distinct classes as A = [A1, . . . ,Ac], where Ak = {xk1 , . . . ,xknk

} (i.e., Ak

holds the samples of class k in its columns, nk is the number of samples in
Ak and

∑c
k=1 nk = n)

Let x be a test sample which can be appropriately represented by a linear
combination of the atoms (training samples) in the dictionary A:

x ≈ x1α1 + x2α2 + · · ·+ xnαn = [x1x2 . . .xn][α1α2 . . . αn]
T = Aα+ ε

where α = [αT1 , . . . ,α
T
c ]
T is an n-dimensional sparse vector (i.e., most

elements of α are zero), αi is the vector of regression coefficients associated
with class i and ε is the representation error
Central assumption xi (belonging to class i) is well approximated by Aiαi,
i.e., αj = 0, for j 6= i.

M. Dalla Mura (GIPSA-Lab) Hyperspectral SRC of APs SFPT-GH 2014 12 / 21



Sparse Representation Classification

Sparse Representation

Sparse Representation
Principle a sample (i.e., a pixel) can be represented by a (sparse) linear
combination of atoms from a training dictionary
Dictionary A = {x1, . . . ,xn} ∈ Rn×l with n samples of l dimensions of c
distinct classes as A = [A1, . . . ,Ac], where Ak = {xk1 , . . . ,xknk

} (i.e., Ak

holds the samples of class k in its columns, nk is the number of samples in
Ak and

∑c
k=1 nk = n)

Let x be a test sample which can be appropriately represented by a linear
combination of the atoms (training samples) in the dictionary A:

x ≈ x1α1 + x2α2 + · · ·+ xnαn = [x1x2 . . .xn][α1α2 . . . αn]
T = Aα+ ε

where α = [αT1 , . . . ,α
T
c ]
T is an n-dimensional sparse vector (i.e., most

elements of α are zero), αi is the vector of regression coefficients associated
with class i and ε is the representation error
Central assumption xi (belonging to class i) is well approximated by Aiαi,
i.e., αj = 0, for j 6= i.

M. Dalla Mura (GIPSA-Lab) Hyperspectral SRC of APs SFPT-GH 2014 12 / 21



Sparse Representation Classification

Sparse Representation

Finding α

The sparse vector α can be estimated by solving the following optimization
problem (NP hard):

α̂ = argmin ‖α‖0 subject to ‖xi −Aα‖2 ≤ δ,

where ‖α‖0 denotes the `0-(pseudo) norm which counts the nonzero
components in the coefficient vector and δ is an error tolerance.
This can be approximated by a convex problem (and solved using linear
programming) by replacing `0-norm with the `1-norm:

α̂ = argmin ‖α‖1 subject to ‖xi −Aα‖2 ≤ δ,

This is equivalent to the unconstrained optimization problem:

min
α

1

2
‖xi −Aα‖22 + τ‖α‖1,

where the parameter τ is a Lagrange multiplier which balances the tradeoff
between the reconstruction error and the sparse solution
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Sparse Representation Classification

Classification

Once α is estimated, each sample is assigned to the class that shows the least
residual in the reconstruction (i.e., the atoms in the dictionary belonging to
that class are contributing most to the representation of the sample)

ĉlass(xi) = arg min
j∈{1,...,c}

‖xi −Ajαj‖2.
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Experimental Results Simulated data

Synthetic image

The simulated image is generated with a size of N = 128× 128 pixels made
up of linear mixtures between 3 components as follows:

xi =

c∑
k=1

mks
k
i + ni,

where s = {s1, . . . , sN} is the fractional abundances matrix which is
generated according to a uniform distribution over the simplex.
m = {m1,m2,m3} is the mixing matrix where the spectral signatures used
were randomly obtained from the United States Geological Survey (USGS)
digital librarya.
Zero-mean Gaussian noise with variance σ2I, i.e., ni ∼ (0, σ2I) is added to
our simulated image (σ = 0.3182 approx. SNR 5dB)
Spectra highly mixed (all pixels have abundance fractions less than 0.5)

ahttp://speclab.cr.usgs.gov
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Experimental Results Simulated data

Synthetic image

(a) Image of class labels for a simulated data set made up with highly mixed
pixels and noise
(b) Sparse classification based on the original spectral information
(OA=89.34%)
(c) Sparse classification based on EMAPs (OA=99.11%)
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Experimental Results Simulated data

Synthetic image

Sparse representation of two different test samples from a simulated
hyperspectral scene in spectral and EMAP space
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Experimental Results Real data

Details on the SRC

Sparse representation of a sample from a highly mixed class
(building-grass-tree-drives, class number 15) of the AVIRIS Indian Pines data in
spectral and EMAP space.
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Experimental Results Real data

Numerical results

Overall accuracy (OA), average accuracy (AA), kappa statistic (κ) and class
individual accuracies ([%]) obtained by different classifiers on the AVIRIS Indian
Pines data (here, we use a total of 115 samples for training, which represents
about 1% of the available labeled data for the scene).
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Experimental Results Real data

Classification maps

Classification results obtained by different classifiers for the AVIRIS Indian Pines
scene (using a total of 115 samples for training, which represents about 1% of the
available labeled data for the scene).

M. Dalla Mura (GIPSA-Lab) Hyperspectral SRC of APs SFPT-GH 2014 20 / 21



Conclusion

Conclusion

We have proposed a new classification strategy that integrates sparse
representations and extended multi-attribute profiles (EMAPs) for
spatial-spectral classification of remote sensing data.
The proposed approach can appropriately exploit the inherent sparsity
present in EMAPs in order to provide state-of-the-art classification results.
This is mainly due to the fact that the samples in EMAP space can be
approximately represented by a few number of atoms in the training
dictionary after solving the optimization problem, while the same samples
could not be represented in the original spectral space with the same level of
sparsity.
A comparison with state-of-the-art classifiers shows very promising results
for the proposed approach, particularly when a very limited number of
training samples is available.
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