DE LA RECHERCHE À L'INDUSTRIE

FUSION D'IMAGES HYPERSPECTRALES ET PANCHROMATIQUES

COMPARAISON DES APPROCHES PAR ONDELETTES ET PAR DÉMÉLANGE SPECTRAL

Rodolphe MARION (CEA)
Bénédicte NOUYOU
Vincent SARAGO

3e colloque scientifique SFPT-GH 15 et 16 mai 2014 IGESA Porquerolles

CONTEXTE

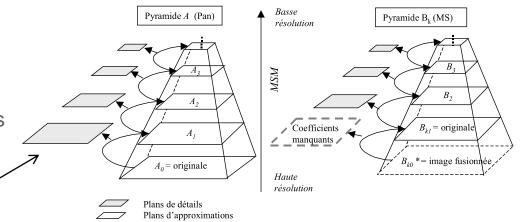
Objectif de la fusion

- Combiner une image haute résolution spatiale (PAN) avec une image haute résolution spectrale (HS) pour obtenir une image fusionnée possédant les caractéristiques spatiales et spectrales les meilleures possibles
 - Améliorer la qualité visuelle (description spatiale de la scène)
 - Préserver l'information spectrale (analyse des signatures des matériaux)

Etat de l'art des méthodes de fusion

- Les méthodes de projection-substitution
- Les méthodes à contribution spectrale relative
- Les méthodes statistiques
- Les méthodes multi-résolution
- Les méthodes par dé-mélange spectral
 - Un grand nombre de méthodes (difficultés pour l'utilisateur de faire un choix)
 - Comparaison multi-résolution (mathématique) / dé-mélange spectral (physique)

SOMMAIRE


- Méthodes multi-résolution
 - Ondelettes et analyse multi-résolution
 - Concept ARSIS
 - Méthode CBD
- Méthodes par dé-mélange spectral : méthode UCNMF
 - Principe
 - Algorithme
- Evaluation sur données simulées
- Applications sur images réelles
 - Protocole et indices de qualité
 - Nouvelle-Orléans (Hyperion/Ikonos)
 - Ranger Mine (Hyperion/QuickBird)
- Conclusion et perspectives

ONDELETTES ET ANALYSE MULTI-RÉSOLUTION

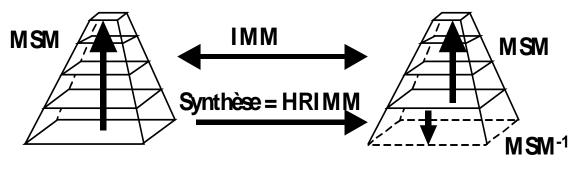
- Espaces d'approximations
 - fonctions d'échelle
- Espaces de détails

fonctions ondelettes

$$C_1(x, y) = A_0(x, y) - A_1(x, y)$$

Analyse multi-résolution pour la fusion d'images (Thomas, 2006)

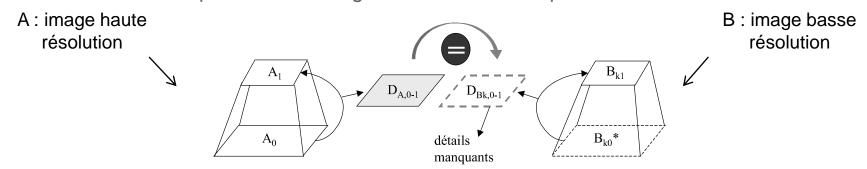
- Exemples de mise en œuvre pratique :
 - Algorithme de Mallat (bancs de filtres)
 - « A Trous » Wavelet Transform (ATWT)
 - Transformation non décimée
 - La fonction d'échelle est une spline cubique
 - Utilisation d'un filtre de convolution pour le calcul des approximations
 - Les coefficients d'ondelettes sont obtenus par différence entre 2 approximations successives :


$$C_{j+1}(x,y) = A_j(x,y) - A_{j+1}(x,y)$$

CONCEPT ARSIS « AMÉLIORATION DE LA RÉSOLUTION SPATIALE PAR INJECTION DE STRUCTURES » (RANCHIN ET WALD, 2000)

- Utilise des techniques multi-résolution et d'ondelettes afin d'injecter dans l'image basse résolution les hautes fréquences de l'image haute résolution
- 4 étapes, 3 modèles :
 - Description hiérarchique du contenu spatial des images A et B en utilisant une transformée (MSM : Multi-Scale Model)
 - Recherche des relations entre les informations de fréquence (détails ou approximations) des images A et B (IMM : Inter-Modality Model)
 - Calcul du plan de détails manquant pour l'image B (HRIMM : High Resolution Inter-Modality Model)
 - Synthèse de l'image fusionnée (MSM⁻¹)

A : image haute résolution


B : image basse résolution

Le concept ARSIS (Thomas, 2006)

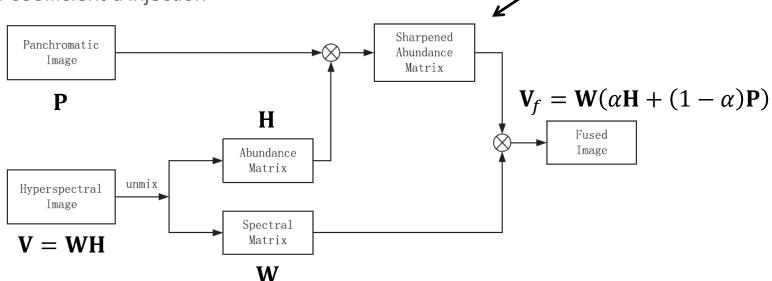
QUELQUES MÉTHODES DU CONCEPT ARSIS

- Méthode M1 (la plus simple)
 - Pas d'estimation de paramètre
 - Les coefficients de détails manquants résultent directement des coefficients de la décomposition de l'image haute résolution spatiale

Principe de la méthode M1 (Thomas, 2006)

Méthode CBD

- « Context-Based Decision » (Aiazzi et al., 2001)
- Suppose une relation linéaire entre les plans d'approximations de l'image A et ceux de l'image B, inchangée avec le changement d'échelle
- Estimation locale (fenêtre glissante) du coefficient de la relation linéaire
- Application de la relation linéaire conditionnellement à un coefficient de corrélation


MÉTHODE UCNMF: PRINCIPE

Unmixing-based Constrained Nonnegative Matrix Factorization »
 (Zhang et al., 2012)

- Modèle de fusion d'images hyperspectrales et panchromatiques
- Dé-mélange spectral avec contrainte
 - Matrice des endmembers W
 - Matrice des abondances H
- Fusion des données : $V_f = W(\alpha H + (1 \alpha)P)$

 α : coefficient d'injection

amélioration de la résolution spatiale de la carte d'abondances

Principe de la méthode UCNMF (Zhang et al., 2012)

MÉTHODE UCNMF: ALGORITHME

Dé-mélange NMF (*Nonnegative Matrix Factorization*) (Lee & Seung, 1999) L'image hyperspectrale $\mathbf{V} \in \mathbb{R}^{L \times K}$ est décomposée telle que :

$$V = WH$$

L : nombre de bandes spectrales *K* : nombre de pixels hyperspectraux

Spectral Angle Mapper

Fonction coût

$$\min J(\mathbf{W}, \mathbf{H}) = \frac{1}{2} \|\mathbf{V} - \mathbf{W}\mathbf{H}\|_F^2 + \beta S(\mathbf{V}_f)$$

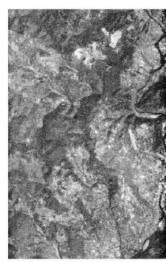
s. t. **W**
$$\geq$$
 0, **H** \geq 0

 β : poids de la contrainte spectrale $\|\mathbf{A}\|_F$: norme de Frobenius de la matrice \mathbf{A}

- Image fusionnée : $V_f = W(\alpha H + (1 \alpha)P)$
- Paramètres

- α : coefficient d'injection de l'image panchromatique

 β : poids de la contrainte spectrale


- Résolution numérique de la minimisation Algorithme (itératif) du gradient projeté de Lin (Lin, 2007)
- Initialisation de **W** et **H** par l'algorithme VCA (*Vertex Component Analysis*) (Nascimento & Dias, 2005)

APPLICATIONS SUR IMAGES RÉELLES : PROTOCOLE

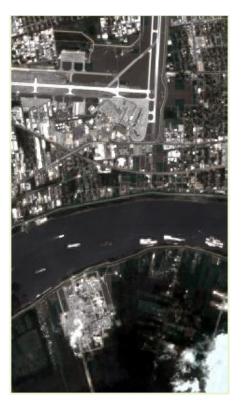
- Prétraitements des images Hyperion
 - Conversion des données brutes en luminance
 - Sélection des 196 bandes spectrales utiles
 - Correction du décalage spatial de la voie SWIR
 - Décolonage de l'image de luminance
 - Co-alignement spatial des voies VNIR et SWIR
- Registration spatiale des images
- Fusion : CBD et UCNMF
- Analyse visuelle des résultats
- Analyse quantitative (critères de qualité : SAM, Q-average, QNR, CC spectrale, CC spatiale, PSNR, Entropie)
 - Sur données réelles :
 - Comparer l'image fusionnée dégradée spatialement et l'image hyperspectrale initiale
 - Comparer l'image fusionnée dégradée spectralement et l'image panchromatique initiale

<u>Décolonage d'une image Hyperion</u> (à gauche : avant, à droite : après)

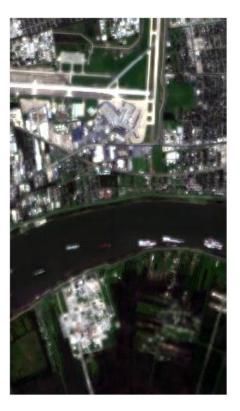
HYPERION/IKONOS NOUVELLE-ORLÉANS [1/4]

- Image hyperspectrale
 - Satellite Hyperion
 - Résolution spatiale : 30m
- Image panchromatique
 - Satellite Ikonos
 - Résolution spatiale initiale : 1m
 → ré-échantillonnée à 15m
 (rapport ½)
- Ville de la Nouvelle-Orléans (Etats-Unis) : aéroport, usines, zones urbaines denses, fleuve...
- Images acquises à 1 heure d'intervalle
 - Différences radiométriques localisées : trafic fluvial, nuages...

Image HS

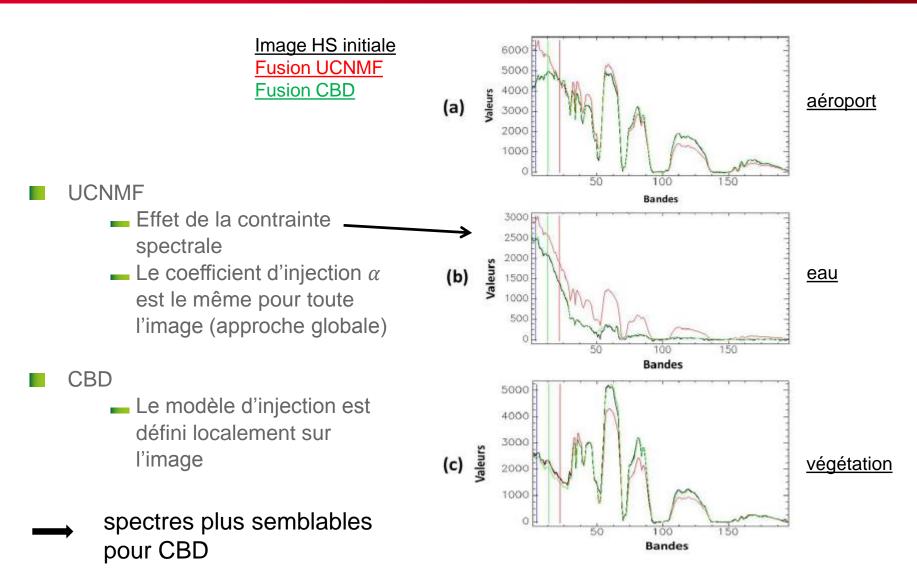

HYPERION/IKONOS NOUVELLE-ORLÉANS [2/4]

Qualité spatiale


- Détails plus nets pour UCNMF
- Structures mieux conservées pour UCNMF

Qualité spectrale

Couleurs dégradées pour UCNMF



Fusion UCNMF

Fusion CBD

HYPERION/IKONOS NOUVELLE-ORLÉANS [3/4]

HYPERION/IKONOS NOUVELLE-ORLÉANS [4/4]

Qualité spatiale : UCNMF

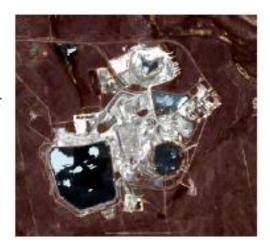
Qualité spectrale : CBD

Méthode	UCNMF	CBD	Résultat
SAM (0)	10,0643	1,4116	CBD
Q-average (1)	0,6415	0,9602	CBD
QNR (1)	0,7673	0,8933	CBD
CC spectrale (1)	0,7177	0,9806	CBD
CC spatiale (1)	0,8432	0,5066	UCNMF
PSNR (+)	22,3229	26,7825	CBD
Entropie relative (0)	-0,3862	-0,11	CBD

HYPERION/QUICKBIRD RANGER MINE [1/3]

- Image hyperspectrale
 - Satellite Hyperion
 - Résolution spatiale : 30m
- Image panchromatique
 - Satellite QuickBird
 - Résolution spatiale initiale : 60cm
 - → ré-échantillonnée à 15m (rapport ½)
- Mine d'uranium à ciel ouvert de Ranger (Australie) : présence de bassins de retenues et de puits d'extraction
- Images acquises à 1 an d'intervalle
 - Différences radiométriques importantes : dans les bassins, présence de nouvelles structures sur le site...

Image HS

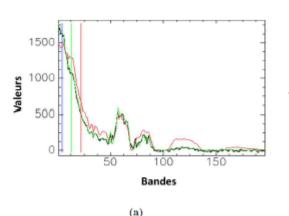

HYPERION/QUICKBIRD RANGER MINE [2/3]

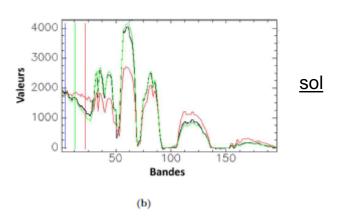
Qualité spatiale

- Détails plus nets pour UCNMF
- Détails dus aux différences temporelles ajoutées pour UCNMF

Qualité spectrale

- Couleurs dégradées pour UCNMF
- Spectres plus semblables pour CBD




Fusion UCNMF

Fusion CBD

Image HS initiale
Fusion UCNMF
Fusion CBD

eau

HYPERION/QUICKBIRD RANGER MINE [3/3]

Qualité spatiale : UCNMF

Qualité spectrale : CBD

Méthode	UCNMF	CBD	Résultat
SAM (0)	12,9681	1,3691	CBD
Q-average (1)	0,5608	0,9557	CBD
QNR (1)	0,7759	0,8954	CBD
CC spectrale (1)	0,6439	0,9768	CBD
CC spatiale (1)	0,7155	0,3692	UCNMF
PSNR (+)	28,1231	19,994	UCNMF
Entropie relative (0)	-0,4648	-0,115	CBD

CONCLUSION ET PERSPECTIVES

Conclusion

- Pour les jeux de données utilisés, l'approche par ondelettes (méthode CBD) fournit de meilleurs résultats que l'approche par dé-mélange spectral (méthode UCNMF)
 - Amélioration des structures spatiales
 - Meilleure préservation de l'information spectrale

Perspectives

- Ondelettes
 - SDM: Spectral Distortion Minimizing (Garzelli et al., 2004)
 - Approche globale (meilleures performances pour les forts rapports de résolution)
- Dé-mélange spectral
 - SCNMF: Sparse Constraint Nonnegative Matrix Factorization (Chen et al., 2014)
 - Ajout d'une contrainte de parcimonie sur les abondances (stabilité et sens physique de la solution)
 - Utilisation du Laplacien de **P** (\(\) distorsions spectrales)
 - **—** Utilisation d'un coefficient d'injection α local ?
- Choix (et classification) des critères de qualité
- Comparaison globale des performances des deux approches : rapports de résolutions, types de paysages, robustesse aux erreurs de registration...

MERCI QUESTIONS?

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 XX XX XX XX | F. +33 (0)1 XX XX XX XX

Direction
Département
Service