DE LA RECHERCHE À L'INDUSTRIE

FUSION D'IMAGES HYPERSPECTRALES ET PANCHROMATIQUES

COMPARAISON DES APPROCHES PAR ONDELETTES ET PAR DÉ-MÉLANGE SPECTRAL

Rodolphe MARION (CEA) Bénédicte NOUYOU Vincent SARAGO

3e colloque scientifique SFPT-GH 15 et 16 mai 2014 IGESA Porquerolles

www.cea.fr

Objectif de la fusion

- Combiner une image haute résolution spatiale (PAN) avec une image haute résolution spectrale (HS) pour obtenir une image fusionnée possédant les caractéristiques spatiales et spectrales les meilleures possibles
 - Améliorer la qualité visuelle (description spatiale de la scène)
 - Préserver l'information spectrale (analyse des signatures des matériaux)

Etat de l'art des méthodes de fusion

- Les méthodes de projection-substitution
- Les méthodes à contribution spectrale relative
- Les méthodes statistiques
- Les méthodes multi-résolution
- Les méthodes par dé-mélange spectral
 - → Un grand nombre de méthodes (difficultés pour l'utilisateur de faire un choix)
 - → Comparaison multi-résolution (mathématique) / dé-mélange spectral (physique)

- Méthodes multi-résolution Ondelettes et analyse multi-résolution Concept ARSIS Méthode CBD
- Méthodes par dé-mélange spectral : méthode UCNMF
 Principe
 Algorithme
- Evaluation sur données simulées
- Applications sur images réelles
 Protocole et indices de qualité
 Nouvelle-Orléans (Hyperion/Ikonos)
 Ranger Mine (Hyperion/QuickBird)
- Conclusion et perspectives

DE LA RECHERCHE À L'INDUSTRI

ONDELETTES ET ANALYSE MULTI-RÉSOLUTION

- Exemples de mise en œuvre pratique :
 - Algorithme de Mallat (bancs de filtres)
 - A Trous » Wavelet Transform (ATWT)
 - Transformation non décimée
 - La fonction d'échelle est une spline cubique
 - Utilisation d'un filtre de convolution pour le calcul des approximations
 - Les coefficients d'ondelettes sont obtenus par différence entre 2 approximations successives :

$$C_{j+1}(x, y) = A_j(x, y) - A_{j+1}(x, y)$$

CONCEPT ARSIS « AMÉLIORATION DE LA RÉSOLUTION SPATIALE PAR INJECTION DE STRUCTURES » (RANCHIN ET WALD, 2000)

- Utilise des techniques multi-résolution et d'ondelettes afin d'injecter dans l'image basse résolution les hautes fréquences de l'image haute résolution
 - 4 étapes, 3 modèles :
 - Description hiérarchique du contenu spatial des images A et B en utilisant une transformée (MSM : Multi-Scale Model)
 - Recherche des relations entre les informations de fréquence (détails ou approximations) des images A et B (*IMM : Inter-Modality Model*)
 - Calcul du plan de détails manquant pour l'image B (*HRIMM : High Resolution* Inter-Modality Model)
 - Synthèse de l'image fusionnée (*MSM-1*)

QUELQUES MÉTHODES DU CONCEPT ARSIS

- Méthode M1 (la plus simple)
 - Pas d'estimation de paramètre
 - Les coefficients de détails manquants résultent directement des coefficients de la décomposition de l'image haute résolution spatiale

Principe de la méthode M1 (Thomas, 2006)

Méthode CBD

- Context-Based Decision » (Aiazzi et al., 2001)
- Suppose une relation linéaire entre les plans d'approximations de l'image A et ceux de l'image B, inchangée avec le changement d'échelle
- Estimation locale (fenêtre glissante) du coefficient de la relation linéaire
- Application de la relation linéaire conditionnellement à un coefficient de corrélation

MÉTHODE UCNMF : ALGORITHME

Dé-mélange NMF (*Nonnegative Matrix Factorization*) (Lee & Seung, 1999) L'image hyperspectrale $\mathbf{V} \in \mathbb{R}^{L \times K}$ est décomposée telle que :

 $\mathbf{V} = \mathbf{W}\mathbf{H}$

L : nombre de bandes spectrales *K* : nombre de pixels hyperspectraux

Spectral Angle Mapper

Fonction coût

min
$$J(\mathbf{W}, \mathbf{H}) = \frac{1}{2} \|\mathbf{V} - \mathbf{W}\mathbf{H}\|_F^2 + \beta S(\mathbf{V}_f)$$

s.t. $W \ge 0, H \ge 0$

 β : poids de la contrainte spectrale $\|\mathbf{A}\|_F$: norme de Frobenius de la matrice **A**

Image fusionnée : $\mathbf{V}_f = \mathbf{W}(\alpha \mathbf{H} + (1 - \alpha)\mathbf{P})$

Paramètres

- α : coefficient d'injection de l'image panchromatique
- $-\beta$: poids de la contrainte spectrale
- Résolution numérique de la minimisation Algorithme (itératif) du gradient projeté de Lin (Lin, 2007)
- Initialisation de W et H par l'algorithme VCA (Vertex Component Analysis) (Nascimento & Dias, 2005)

APPLICATIONS SUR IMAGES RÉELLES : PROTOCOLE

- Prétraitements des images Hyperion
 Conversion des données brutes en luminance
 Sélection des 196 bandes spectrales utiles
 Correction du décalage spatial de la voie SWIR
 Décolonage de l'image de luminance
 Co-alignement spatial des voies VNIR et SWIR
- Registration spatiale des images
- Fusion : CBD et UCNMF

<u>Décolonage d'une image Hyperion</u> (à gauche : avant, à droite : après)

- Analyse visuelle des résultats
- Analyse quantitative (critères de qualité : SAM, Q-average, QNR, CC spectrale, CC spatiale, PSNR, Entropie)
 - Sur données réelles :
 - Comparer l'image fusionnée dégradée spatialement et l'image hyperspectrale initiale
 - Comparer l'image fusionnée dégradée spectralement et l'image panchromatique initiale

DE LA RECHERCHE À L'INDUSTRI

HYPERION/IKONOS NOUVELLE-ORLÉANS [1/4]

- Image hyperspectrale
 - Satellite Hyperion
 - Résolution spatiale : 30m
- Image panchromatique
 Satellite Ikonos
 Résolution spatiale initiale : 1m
 → ré-échantillonnée à 15m
 (rapport ½)
- Ville de la Nouvelle-Orléans (Etats-Unis) : aéroport, usines, zones urbaines denses, fleuve...
- Images acquises à 1 heure d'intervalle
 - Différences radiométriques localisées : trafic fluvial, nuages...

Image PAN

Image HS

HYPERION/IKONOS NOUVELLE-ORLÉANS [2/4]

Qualité spatiale

 Détails plus nets pour UCNMF
 Structures mieux conservées pour UCNMF

Qualité spectrale

Couleurs dégradées pour UCNMF

Fusion UCNMF

Fusion CBD

DE LA RECHERCHE À L'INDUSTR

HYPERION/IKONOS NOUVELLE-ORLÉANS [3/4]

Qualité spatiale : UCNMF Qualité spectrale : CBD

Méthode	UCNMF	CBD	Résultat
SAM (0)	10,0643	1,4116	CBD
Q-average (1)	0,6415	0,9602	CBD
QNR (1)	0,7673	0,8933	CBD
CC spectrale (1)	0,7177	0,9806	CBD
CC spatiale (1)	0,8432	0,5066	UCNMF
PSNR (+)	22,3229	26,7825	CBD
Entropie relative (0)	-0,3862	-0,11	CBD

DE LA RECHERCHE À L'INDUSTRIE

HYPERION/QUICKBIRD RANGER MINE [1/3]

- Image hyperspectrale
 - Satellite Hyperion
 - **Résolution spatiale : 30m**
- Image panchromatique
 - Satellite QuickBird
 - Résolution spatiale initiale :
 60cm

 \rightarrow ré-échantillonnée à **15m** (rapport $\frac{1}{2}$)

- Mine d'uranium à ciel ouvert de Ranger (Australie) : présence de bassins de retenues et de puits d'extraction
- Images acquises à 1 an d'intervalle
 Différences radiométriques importantes : dans les bassins, présence de nouvelles structures sur le site...

Image PAN

Image HS

HYPERION/QUICKBIRD RANGER MINE [2/3]

Qualité spatiale

 Détails plus nets pour UCNMF
 Détails dus aux différences temporelles ajoutées pour UCNMF

Qualité spectrale

 Couleurs dégradées pour UCNMF
 Spectres plus semblables pour CBD

Fusion UCNMF

Fusion CBD

3e colloque SFPT-GH | 15 et 16 mai 2014 | IGESA Porquerolles | PAGE 15

Qualité spatiale : UCNMF Qualité spectrale : CBD

Méthode	UCNMF	CBD	Résultat
SAM (0)	12,9681	1,3691	CBD
Q-average (1)	0,5608	0,9557	CBD
QNR (1)	0,7759	0,8954	CBD
CC spectrale (1)	0,6439	0,9768	CBD
CC spatiale (1)	0,7155	0,3692	UCNMF
PSNR (+)	28,1231	19,994	UCNMF
Entropie relative (0)	-0,4648	-0,115	CBD

CONCLUSION ET PERSPECTIVES

Conclusion

Pour les jeux de données utilisés, l'approche par ondelettes (méthode CBD) fournit de meilleurs résultats que l'approche par dé-mélange spectral (méthode UCNMF)

- Amélioration des structures spatiales
- Meilleure préservation de l'information spectrale

Perspectives

Ondelettes

- **__** SDM : Spectral Distortion Minimizing (Garzelli et al., 2004)
- Approche globale (meilleures performances pour les forts rapports de résolution)

Dé-mélange spectral

- SCNMF : Sparse Constraint Nonnegative Matrix Factorization (Chen et al., 2014)
 - Ajout d'une contrainte de parcimonie sur les abondances (stabilité et sens physique de la solution)
 - Utilisation du Laplacien de \mathbf{P} (\searrow distorsions spectrales)
- Utilisation d'un coefficient d'injection α local ?
- Choix (et classification) des critères de qualité
- Comparaison globale des performances des deux approches : rapports de résolutions, types de paysages, robustesse aux erreurs de registration...

MERCI

QUESTIONS?

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 XX XX XX XX | F. +33 (0)1 XX XX XX XX Direction Département Service

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019