METHODES STATISTIQUES POUR LA CARTOGRAPHIE DE ZONES CÔTIERES A PARTIR D'IMAGES HYPERSPECTRALES DE TELE-DETECTION

Sylvain JAY sylvain.jay@irstea.fr Mireille GUILLAUME

mireille.guillaume@fresnel.fr

Ecole Centrale Marseille, CNRS, Aix Marseille Université, Institut Fresnel, UMR 7249, 13013 Marseille, France

Contexte

Modèle semi-analytique de réflectance subsurface: $r = r_{\infty} + K_B r_{0,B} + K_C r_{\infty}$

 r_{∞} : réflectance d'une colonne d'eau infinie; $r_{0,B}$: réflectance du fond; K_B , K_C : matrice d'atténuation de la colonne d'eau.

L'estimation des paramètres caractéristiques de la colonne d'eau, un problème inverse:

Observation $r \rightarrow r_{\infty}, K_B, K_C \rightarrow Absorption a$, Rétro-diffusion $b_b \rightarrow Vecteur de paramètres <math>\theta = (H, C_{PHY}, C_{CDOM}, C_{NAP})$

Méthodes classiques d'estimation de paramètres de la colonne d'eau :

- Méthodes pixel à pixel,

- Non prise en compte des corrélations spatiales et spectrales.

$$\widehat{\boldsymbol{\theta}}_{ML}(\boldsymbol{\chi}_N) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \operatorname{P}(\boldsymbol{\chi}_N | \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \quad \frac{1}{\sqrt{(2\pi)^L |\boldsymbol{\Gamma}|^N}} e^{-\frac{1}{2} \sum (r_{ij} - \boldsymbol{\mu})^t \boldsymbol{\Gamma}^{-1}(r_{ij} - \boldsymbol{\mu})}$$

où $\mu = \mu(\theta)$, $\Gamma = \Gamma(\theta)$, et $\chi_N = \{r_{11}, ..., r_{Ni Nj}\}$ une petite zone de l'HSI contenant $N = N_i x N_j$ observations supposées i.i.d.

→ Problème: θ est supposé constant sur cet ensemble \Rightarrow diminution de la résolution spatiale.

Estimation non-stationnaire pour la cartographie des paramètres de la colonne d'eau [2]

Estimation locale:

Hypothèses: Dans l'imagette χ_N , (a) La profondeur varie localement de façon linéaire, et (b) La turbidité de l'eau est localement homogène.

 \Rightarrow Les pixels ne sont plus i.i.d., et on a donc: P

$$(\chi_{\mathrm{N}}|\boldsymbol{\theta}) = \prod_{i,j}^{N_{i},N_{j}} \frac{1}{\sqrt{(2\pi)^{L}|\boldsymbol{\Gamma}_{ij}|}} e^{-\frac{1}{2}(\boldsymbol{r}_{ij}-\boldsymbol{\mu}_{ij})^{t}\boldsymbol{\Gamma}_{ij}^{-1}(\boldsymbol{r}_{ij}-\boldsymbol{\mu}_{ij})}$$

Au pixel (*i*,*j*), *H* est modélisé par $H_{ij} = A \times i + B \times j + H_0$ et le nouveau vecteur de paramètres est donc $\theta = (A, B, H_0, C_{PHY}, C_{CDOM}, C_{NAP})$.

Extension à la cartographie:

- 1. Maillage carré de l'HSI et,
- 2. Pour chaque imagette χ_N :
 - Estimation des paramètres avec H linéaire par morceaux (voir ci-contre) $\rightarrow ex: \widehat{H}_{LIN}$,
 - Estimation des paramètres avec *H* constant $\rightarrow ex$: \widehat{H}_{STD} .
- 3. Moyenne pondérée des 2 cartes obtenues en fonction de la profondeur considérée
 - $H \downarrow \Rightarrow$ SNR $\uparrow \Rightarrow$ Poids de $H_{LIN} \uparrow$ et poids de $H_{STD} \downarrow$
 - $H \uparrow \Rightarrow$ SNR $\downarrow \Rightarrow$ Poids de $H_{LIN} \downarrow$ et poids de $H_{STD} \uparrow$
- ⇒ Carte multi-résolution de la profondeur.

Figure: Modèle de profondeur variable: (a) Modèle linéaire, et (b) Modèle linéaire par morceaux.

Figure: Résultats d'estimation locale de la profondeur: (a) Image RGB reconstruite, et (b) Bathymétrie estimée.

Figure: Résultats de cartographie: (a) Profil bathymétrique vrai, (b) Image RGB reconstruite, (c) Bathymétrie estimée, et (d) Distribution du phytoplancton estimée.

3^{ème} colloque scientifique de la SFPT-GH – 15-16 mai 2014 - Porquerolles

Pour plus d'informations

[1] S. Jay, M. Guillaume, J. Blanc-Talon. "Underwater target detection with hyperspectral data: solutions for both known and unknown water quality. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 5, no. 4, pp. 1213-1221., 2012.

[2] S. Jay, M. Guillaume. "A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data". *Remote Sensing of Environment*, vol. 147, pp. 121-132, 2014.
* S. Jay. "Estimation et détection en imagerie hyperspectrale: application aux environnements côtiers. Ph.D. thesis. Ecole Centrale Marseille. 2012.