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Visible, near-infrared and short wave infrared (VNIR/SWIR, 0.4–2.5 μm) hyperspectral satellite imaging is one of
themost promising tools for topsoil propertymapping for the following reasons: i) it is derived from a laboratory
technique that has been demonstrated to be a good alternative to costly physical and chemical laboratory soil
analysis for estimating a large range of soil properties; ii) it can benefit from the increasing number of method-
ologies developed for VNIR/SWIR hyperspectral airborne imaging; and iii) it provides a synoptic viewof the study
area. Despite the significant potential of VNIR/SWIR hyperspectral airborne data for topsoil property mapping,
the transposition to satellite data must be evaluated. The objective of this study was to test the sensitivity of
clay content prediction to atmospheric effects and to degradation of spatial resolution. This study may offer an
initial analysis of the potential of future hyperspectral satellite sensors, such as the HYPerspectral X Imagery
(HYPXIM), the Spaceborne Hyperspectral Applicative Land and Ocean Mission (SHALOM), the PRecursore
IperSpettrale della Missione Applicativa (PRISMA), the Environmental Mapping and Analysis Program
(EnMAP) and the Hyperspectral Infrared Imager (HyspIRI), for soil applications. This study employed VNIR/
SWIR AISA-DUAL airborne data acquired in a Mediterranean region over a large area (300 km2) with an initial
spatial resolution of 5m. These hyperspectral airborne data were simulated at the top of the atmosphere and ag-
gregated at six spatial resolutions (10, 15, 20, 30, 60 and 90m) to correlate with the future hyperspectral satellite
sensors. The predicted clay contentmapswere obtainedusing the partial least squares regression (PLSR)method.
The large area of the studied region allows analysis of different pedological patterns of soil composition and spa-
tial structures. Our results showed the following: (i)whena correct compensation of atmosphere effectswas per-
formed, only slight differences were detected between clay maps retrieved from the airborne imagery and those
from spaceborne imagery (both at 5m of spatial resolution); (ii) the PLSRmodels, built from data with 5 to 30m
spatial resolutions, performed well, and allowed clay mapping, although variations in clay content related to
short scale succession of parent material was imperfectly captured beyond 15 m of spatial resolution; (iii) the
PLSRmodels built from data with 60 and 90m spatial resolutions were inaccurate, and did not enable clay map-
ping; and (iv) the two latter results could be explained by the combination of a small short-scale clay content var-
iability and small field sizes observed in the study area. Therefore, in the Mediterranean and under the spectral
specifications of the AISA-DUAL airborne sensor, most of the future hyperspectral satellite sensors (four of the
five sensors examined in this study) will be potentially useful for clay content mapping.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In soil science, laboratory VNIR/SWIR spectroscopy has been demon-
strated to be an alternative to costly physical and chemical soil analysis
for the estimation of a large range of soil properties (e.g., Ben-Dor &
Banin, 1995; Cécillon et al., 2009; Viscarra Rossel, Walvoort, McBratney,
Janik, & Skjemstad, 2006). One way to retrieve soil properties is to
use known specific absorption features (e.g., Clark & Roush, 1984;
Lagacherie, Baret, Feret,MadeiraNetto, & Robbez-Masson, 2008). For ex-
ample, illite, kaolinite and montmorillonnite clay materials have an ab-
sorption peak around 2.206 μm, corresponding to the combination of
OH stretch and OH-Al bending modes (e.g., Chabrillat, Goetz, Krosley,
& Olsen, 2002). Illite clay material also has absorption features near
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2.3 and 2.4 μm (Clark, 1999), and CaCO3 has an absorption peak around
2.348 μm corresponding to CO3 overtone vibrations (Gaffey, 1987).
Moreover, various chemometric methods have been used to relate soil
VNIR/SWIR spectra to soil properties, including multiple regression
analysis (Ben-Dor & Banin, 1995), stepwise multiple linear regression
(Shibusawa, Imade Anom, Sato, Sasao, & Hirako, 2001), multivariate
adaptive regression splines (Shepherd & Walsh, 2002), principal com-
ponents regression (e.g., Chang, Laird, Mausbach, & Hurburgh, 2001)
and support vector machine regression (Stevens et al., 2010). The par-
tial least-squares regression (PLSR) method is themost commonmulti-
variate statistical technique used for spectral calibration and prediction
of soil properties (e.g., Chang & Laird, 2002; McCarty, Reeves, Reeves,
Follett, & Kimble, 2002). These chemometric methods allow for the pre-
diction of soil properties, independent of whether they have a spectral
response. For example, pH which is not expected to have a direct
spectral response, has been fairly predicted in several cases using che-
mometric methods, due to covariation to spectrally active soil constitu-
ents, such as organic matter and clay (e.g., Chang et al., 2001; Islam,
Stingh, & McBratney, 2003).

Because knowledge of laboratory spectroscopy has improved, the
number of studies using VNIR/SWIR hyperspectral airborne imaging in
topsoil property mapping has also increased (e.g., Ben-Dor, Patkin,
Banin, & Karnieli, 2002; Gomez, Lagacherie, & Coulouma, 2008; Selige,
Bohner, & Schmidhalter, 2006; Stevens et al., 2010). VNIR/SWIR
hyperspectral airborne imaging has been considered a promising
technology for increasing the accuracy of digital mapping of topsoil
properties targeted by the Global Soil Map (GSM) project (www.
globalsoilmap.net) (Lagacherie & Gomez, 2014). The GSM project has
proposed the construction of a new digital soil map of the world at a
spatial resolution of 90 m to assist in the decision-making process for
a range of global issues, such as food production, climate change and
environmental degradation (Sanchez et al., 2009). In this context,
VNIR/SWIR hyperspectral airborne imaging can provide a synoptic
view of the area under study at spatial resolutions appropriate for top-
soil property mapping (Gomez, Coulouma, & Lagacherie, 2012) and is
particularly well-adapted to semi-arid areas in which bare soil surfaces
are common, and dry periods enable avoidance of soil moisture pertur-
bations of the spectrum (Lagacherie et al., 2008).

Two spaceborne sensors, PRISMA (PRecursore IperSpettrale della
Missione Applicativa) and EnMAP (Environmental Mapping and Analy-
sis Program, http://www.enmap.org/) are expected to be launched in
the near future. PRISMA is an Italian hyperspectral sensor to be
launched in 2017 (Lopinto &Ananasso, 2013). The spatial resolution ini-
tially considered for this sensor was between 20 and 30 m over the
spectral range of 0.4 to 2.5 μm, and between 2.5 and 5m in the panchro-
matic band (Giampaolo et al., 2008). Recently, the spatial resolution of
PRISMA has been highlighted as 30 m in the 0.4 to 2.5 μm interval,
and 5 m in the panchromatic band (The Prisma Mission, Nota
Informativa, Agenzia Spaziale Italiana, DC-OST-2009-124-04/09/09/
Retrieved 23 August 2013). EnMAP is a German hyperspectral sensor,
set for launch in 2017, with a spatial resolution of 30m over the spectral
range of 0.4 to 2.5 μm (Stuffler et al., 2007). Moreover, the following
three new advanced hyperspectral sensors are under study: HyspIRI
(Hyperspectral Infrared Imager), SHALOM (Spaceborne Hyperspectral
Applicative Land and Ocean Mission) and HYPXIM (HYPerspectral X
Imagery). HyspIRI is an American hyperspectral sensor with a spatial
resolution of 60 m over the spectral range of 0.38 to 2.5 μm
(hyspiri.jpl.nasa.gov). SHALOM is an Italy–Israel initiative with a spec-
tral range of 0.4 to 2.5 μm, and a spatial resolution initially defined at
15 m (Bussoletti, 2012), which recently evolved from 15 m to 10 m
(Ben-Dor, Kafri, & Varacalli, 2014). HYPXIM is a French hyperspectral
sensor with a spatial resolution better than 8 m over the spectral
range of 0.5 to 2.5 μm, and of 1.8 m in the panchromatic band
(Briottet et al., 2013; Carrere et al., 2013).

Despite the significant potential of the VNIR/SWIR hyperspectral air-
borne data for mapping several soil properties, the application of
methods developed for airborne data (such as the PLSR method) to
satellite data is not a straightforward process. Several factors can affect
topsoil property mapping via satellite sensors, including a lower signal
to noise ratio, atmospheric effects, different spectral characteristics
(varying band centers and spectral resolutions) and coarser spatial res-
olutions. At the moment, the future spaceborne sensors plan to acquire
reflectance data with spectral resolution of approximately 10 nm
(Staenz, Mueller, & Heiden, 2013), which is close to the resolution
used by airborne sensors HYMAP (approximately 15 nm, Cocks,
Jenssen, Stewart, Wilson, & Shields, 1998; Kruse et al., 1999) or AISA-
DUAL (approximately 5 nm and 7 nm, Specim Society, http://www.
channelsystems.ca/). So the application of methods to satellite data
for mapping several soil properties should not be affected by the spec-
tral resolution. Conversely, spatial resolutions planned for future
spaceborne sensors (between 8 to 60 m) are coarser than the ones
used by airborne sensors, such asHYMAPor AISA-DUAL (approximately
5 m). The various effects of the spatial resolution degradation on multi-
spectral remote sensing data have been studied, including flux predic-
tion (e.g., Kustas & Norman, 2000), crop area estimation and crop
growth monitoring (e.g., Duveiller & Defourny, 2010) and agricultural
land monitoring (e.g., Ismail, Mutanga, Kumar, & Urmilla, 2008;
Pax-Lenney & Woodcock, 1997). Some spatial resolution degradation
studies have also focused on VNIR/SWIR hyperspectral data for vegeta-
tion studies (e.g., Nijland, Addink, De Jong, & Van der Meer, 2009;
Rahman, Gamon, Sims, & Schmidts, 2003; Schaaf, Dennison, Fryer,
Roth, & Roberts, 2011; Thorp, French, & Rango, 2013; Zhang,
Middleton, Gao, & Cheng, 2012). However, to our knowledge, only a
few studies on the impact of degraded spatial resolution have used
VNIR/SWIR hyperspectral data for fire detection, temperature retrieval
(Lugassi, Ben-Dor, & Eshel, 2010) and urban studies (Jensen & Cowen,
1999; Roberts, Quattrochi, Hulley, Hook, & Green, 2012), with none fo-
cused on soil science applications.

Moreover, few studies have reported the use of VNIR/SWIR
hyperspectral satellite data for topsoil property mapping (e.g., Gomez,
Viscarra Rossel, & McBratney, 2008; Weng, Gong, & Zhu, 2008; Zhang,
Li, & Zheng, 2009). This scarcity of studies using satellite data in soil sci-
ence, comparedwith studies using airborne data, is due to the existence
of only one VNIR/SWIR hyperspectral satellite sensor (the Hyperion
sensor on board the EO-1 satellite launched in 2002), which has a
low signal to noise ratio (e.g., ~50:1 from 2.1 to 2.4 μm) (Folkman,
Pearlman, Liao, & Jarecke, 2001).

The objective of this study was to evaluate the sensitivity of VNIR/
SWIR hyperspectral-based soil property prediction to atmospheric ef-
fects and degradation in spatial resolution. The selected property was
the topsoil clay content, which is one of the basic soil properties used
by soil surveyors to describe soil types. It is also a key driver of soil ero-
sion processes (Le Bissonnais, 1996), and one of the primary soil prop-
erties included in the GlobalSoilMap specifications (Arrouays et al.,
2014). This study employed the VNIR/SWIR AISA-DUAL hyperspectral
airborne data acquired over a large area (300 km2) in a Mediterranean
region, with an initial spatial resolution of 5 m. The predicted clay con-
tent maps were obtained using the PLSR method.

The study area is described in Section 2, and the airborne, simulated
satellite and field data are described in Section 3. The methodology of
the clay content estimation and statistical issues are presented in
Section 4. Finally, the results are presented in Section 5 and are
discussed in Section 6.

2. Study area

The study area is located in the Cap Bon region in northern Tunisia
(36°24′N to 36°53′N; 10°20′E to 10°58′E), 60 km east of Tunis
(Fig. 1a). This 300 km2 area includes the Lebna catchment, which is pri-
marily rural (N90%), and devoted to cereals, legumes, olive trees, natural
vegetation for breeding and vineyards. This area is characterized by
rolling land, with an elevation between 0 and 226 m. The climate varies
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Fig. 1. a)Map of Tunisia and location of the study area over the Cap Bon region (black polygon) and b) the AISA-DUAL hyperspectral image at 2.206 μm,with location of the Kamech catch-
ment (in the rectangle). In white are the masked areas (vegetated, urban, and water areas). Red targets represent locations of collected soil samples of CalBase_5m. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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from humid to semi-arid, with an inter-annual precipitation of 600mm
and an annual potential evapotranspiration of 1500 mm. The soil pat-
tern of the Lebna catchment primarily arises from variations in the li-
thology. The changes in the landscape between the Miocene
sandstone and the marl outcrops induce significant variations in the
physical and chemical soil properties (Zante, Collinet, & Pepin, 2005).
Furthermore, the distance between the successive sandstone outcrops
decreases in the direction of sea-mountains, which results in variations
in the soil property patterns. The soil materials were redistributed later-
ally along the slopes during the Holocene, which adds to the complexity
of the soil patterns. The main soil types are Regosols, Eutric Regosols
(9.6%) preferentially associated with sandstone outcrops, Calcic
Cambisol and Vertisol, preferentially formed onmarl outcrops and low-
lands. The southeastern region of the study area has a flatter landscape,
with sandy Pliocene deposits yielding Calcosol and Rendzina.

A sub-catchment of the study area was used to examine the short scale
variations in the clay contents. This sub-catchment is a 6.67 km2 area cen-
tered on theKamech catchment (Fig. 1b). The Kamech experimental catch-
ment belongs to a long-term environmental research observatory called
OMERE (Mediterranean observatory of water and rural environment),
which aims to study the anthropogenic effects onwater and sediment bud-
gets at the catchment scale (e.g., Mekki, Albergel, Ben Mechlia, & Voltz,
2006; Raclot & Albergel, 2006). The Kamech catchment represents an
area (15 km from the coast) in which the soil pattern shows strong varia-
tions on a small scale, with a rapid succession of sandstone and shale.
This area had a high percentage of bare soils during the image acquisition
(43.4%), and exhibited contrasting soil patterns.

3. Airborne, simulated satellite and field data

3.1. Hyperspectral airborne radiance data

On November 2, 2010, an AISA-DUAL hyperspectral image was ac-
quired over the study area (12 × 25 km) via plane, at an altitude of
3600 m, with a field of view (FOV) of 24° and a spatial resolution of
5 m (Fig. 1b). The AISA-DUAL airborne imaging spectrometer measures
the at-flight radiances (Lflight_AISA_5m) in 359 non-contiguous bands, cov-
ering the 0.40 μm to 2.45 μm spectral domain, with 0.0046 μm band-
widths between 0.40 μm and 0.97 μm, and 0.0065 μm bandwidths
between 0.97 μm and 2.45 μm. The field of view of the instrument is
24°. On November 2, 2010, the visibility was estimated at 40 km,
using weather reports and visual estimations from the airplane. The
cloud cover was 0% during the flight-time, and neither the in-situ
atmospheric profiles nor the aerosol data were available during the
campaign.

3.2. Simulation of the satellite radiances

3.2.1. Simulation of the “Top of Atmosphere” radiances
The Top of Atmosphere (TOA) synthetic data were obtained by con-

sidering the entire atmosphere layer, requiring the definition of an at-
mosphere profile with a given water vapor content, and the type and
abundance of the aerosols. From these inputs, the TOA radiances
(LTOA_5m) were simulated from the at-flight radiances (Lflight_AISA_5m)
(Fig. 2), according to the following equation:

LTOA 5m ¼ τdir þ τdi f
� �

Lflight AISA 5m þ Latm ð1Þ

where τdir and τdif are the atmospheric direct and diffuse transmittance,
respectively, and Latm is the upwelling atmospheric radiance (without
the contribution of the land). COMANCHE is a radiative transfer model
used to solve Eq. (1) (Miesch et al., 2005). COMANCHE uses an analyti-
cal formulation of the upwelling radiance at the sensor level, in which
the atmospheric parameters are independent of the groundparameters.
The MODTRAN 4 radiative transfer code (Berk et al., 1999) was used to
compute most of the atmosphere parameters (e.g., the columnar water
vapor amount), except for the Earth atmosphere coupling irradiance



Fig. 2. Procedure overview.
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and the environment upwelling radiance, which were estimated with a
Monte Carlo kernel.

In the COMANCHE tool, a rural aerosol model was usedwith a 40 km
visibility, and the United States Standard 1976 atmosphere model from
MODTRAN (Berk et al., 1999). Thismodelwas chosen because it had the
best fit with the value of the total water vapor content, estimated at
1.5 g/cm2 by MOD07 (https://lpdaac.usgs.gov/).

3.2.2. Spatial resolution degradation
An aggregation process was applied to the geometrically corrected

TOA radiances (LTOA_5m) (Fig. 2). As proposed in the following Eq. (2),
the flux of the aggregated surface is equal to the addition of the flux of
each i element forming the entire aggregated surface:

ΩaggLTOA xm ¼
XN
i¼1

ΩiLTOA 5m;i ð2Þ

where Ω is the solid angle corresponding to the instantaneous FOV re-
lated to the different ground sampling distance (GSD) values, and the
index agg refers to the aggregated surface, which is composed of N i
elements. If the N solid angles, Ωi, are equivalent, then the total aggre-
gated solid angle is given by Eq. (3). Finally, the aggregated radiance is
defined by the average of the i radiances, as shown in Eq. (4). Therefore,
the new aggregated pixels were obtained by averaging all of the pixel
values that contributed to the output pixel. This exercisewas performed
using the Resampling Aggregate tool of the ENVI application using the
following equations:

Ωagg ¼ NΩi ð3Þ

LTOA xm ¼ 1
N

XN
i¼1

LTOA 5m;i: ð4Þ
The selected ground sampling distances were driven by the GSD of
the airborne acquired data (5 m). Then, six new TOA radiance images
(LTOA_xm) were produced at the following GSD values: 10, 15, 20, 30,
60 and 90 m. These values were close to those from the spaceborne
missions, as follows: HYPXIM (10 m), SHALOM (15 m), PRISMA
(20 m, 30 m), EnMAP (30 m) and HyspIRI (60 m), and from the value
of the Global Soil Map (GSM) project (www.globalsoilmap.net), set at
90 m.

3.3. Hyperspectral reflectance data

From the airborne radiances (Lflight_AISA_5m), the simulated TOA radi-
ances (LTOA_xm) described in Sections 3.1 and 3.2 and the knowledge of
the atmospheric conditions, the surface reflectance, ρ, was retrieved
using the atmosphere compensation tool COCHISE, which is an inverse
radiative transfer model (Miesch et al., 2005) (Fig. 2), based on the fol-
lowing equation:

LTOA xm i; jð Þ ¼ Latm þ τdir:
E0:ρxm SAT i; jð Þ
π: 1−ρG i; jð Þ:Sð Þ

� �
þ τdi f :

E0:ρF i; jð Þ
π: 1−ρG i; jð Þ:Sð Þ

� �

ð5Þ

where E0 is the distance corrected extra-terrestrial solar irradiance,
ρxm _ SAT(i, j) is the reflectance to be retrieved at pixel (i, j), ρF(i, j) and
ρG(i, j) are the average albedo values given by the convolution with
the environmental functions to consider the contribution of the envi-
ronmental upwelling radiance (F) and the earth atmosphere coupling
irradiance (G), respectively. S is the atmospheric spherical albedo.
These terms are estimatedusing aMonte Carlo approach. The remaining
atmospheric parameters are computed from the MODTRAN 4 radiative
transfer code (Berk et al., 1999). The inversion process is iterative. In the
initial step, the adjacency effects are neglected, and a first estimate of
ρxm _ SAT(i, j) is obtained. Then, Eq. (5) is used to retrieve the surface re-
flectance from the simulated TOA radiances (LTOA_xm). Eq. (5) is used
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again to retrieve the surface reflectance from the airborne radiances
(Lflight_AISA_5m), and in this case, ρxm _ SAT(i, j) is replaced by ρflight _ 5m(i, j).

Finally, to remove the noise effects introduced by this process, the
reflectance spectrum of each pixel was smoothed using the following
filter:

ρsmooth
i ¼ 1

N

Xiþm

j¼i−m

ρ j; m ¼ N−1
2

ð6Þ

where ρismooth is the surface reflectance in the channel number i after the
application of thefilter, andN is an odd integer indicating the number of
wavelength neighbors to be averaged. In our case, N is equal to 3.

Thus, eight reflectance images were obtained. One image was obtain-
ed at a 5 m resolution from the acquired airborne radiances and was
called 5m_AISA. Seven images were obtained from the simulated TOA
radiances at the different GSD values (see Section 3.2.2) and were
called 5m_HYPXIM, 10m_HYPXIM-SHALOM, 15m_SHALOM, 20m_PRISMA,
30m_PRISMA-EnMAP, 60m_HyspIRI and 90m_GSM.
Table 1
Main descriptive statistics of the soil dataset used.

Dataset Number of data Mean ± st.dev Min Max Skewness

CalBase-5m 120 466 ± 174 108 772 −0.11
CalBase-5To30m 82 481 ± 173 122 772 −0.19
CalBase-60m 67 489 ± 173 122 772 −0.15
CalBase-90m 65 484 ± 170 122 764 −0.23
3.4. Band selections and urban, vegetation and water masks

Before the implementation of the clay content retrieval procedure,
noisy or troublesome spectral bands and pixels must be removed
(Fig. 2). We removed the following: a) 20 spectral bands in the blue
part of the spectral domain from 0.4 to 0.484 μm due to instrumental
noise, b) 5 bands from 0.747 μm to 0.766 μm, which correspond to O2

band absorption, c) 12 bands from 0.952 μm to 1.019 μm due to H2O
band absorption and instrument defect, d) 14 bands from 1.094 μm to
1.176 μm due to H2O band absorption, e) 21 bands from 1.339 μm to
1.465 μm due to H2O band absorption and f) 38 bands from 1.773 μm
to 2.005 μm due to H2O band absorption. Therefore, 249 spectral
bands between 0.489 μm and 2.451 μm were retained.

Considering that vegetation coverage is a limiting factor for soil
property mapping, the current hyperspectral data treatments do not
allow comprehensive mapping of an extensive region (e.g., Gomez,
Lagacherie, et al., 2008; Schwanghart & Jarmer, 2011; Selige et al.,
2006; Stevens et al., 2010). Only two studies in remote sensing soilmap-
ping have focused on diversified surface conditions, including partially
vegetated surfaces (Bartholomeus et al., 2010; Ouerghemmi, Gomez,
Naceur, & Lagacherie, 2011), and performedmarginally well. Therefore,
in the absence of effective techniques for predicting soil properties over
semi-vegetated pixels, having a suitable mapping surface remains an
important criterion of hyperspectral image quality. To isolate the bare
soil areas, pixels with normalized difference vegetation index (NDVI)
values over an expert-calibrated threshold were masked. A value of
0.20 was determined after considering twenty parcels, which were vi-
sually inspected in the field. The NDVI was retrieved using bands at
0.672 μm and 0.799 μm. Areas of water were also masked using an
expert-calibrated threshold. Pixels with a reflectance of less than 8% at
1.665 μm were removed. Finally, 13 urban areas were identified by
visual inspection and were also masked.

When the hyperspectral airborne image was acquired (November
2010), a major portion of the soil surface was covered by green vegeta-
tion, primarily consisting of olive trees, native forests, green plants and
vineyards. Based on the hyperspectral image,with a spatial resolution of
5 m, bare soils represented 43.4% of our study area. A degradation of
spatial resolution leads to a slight decrease in the suitable surface area
that can be mapped by VNIR/SWIR spectroscopy. From 5 to 30 m, this
decrease in suitable surface is approximately 4.4% of suitable surface
area, and from 30 to 90 m, this decrease is approximately 6.4%. Based
on the images at 10 m, 15 m, 20 m, 30 m, 60 m and 90 m of spatial res-
olution, bare soils represent 42.6%, 41.5%, 40.6%, 39%, 35.2% and 32.6%,
respectively.
3.5. Field data

One hundred twenty soil sampleswere collected over the study area
(Fig. 1b). Among this sample set, 50 were collected in June 2008, 30 in
October 2009 and 41 in November 2010. All of these soil samples
were collected in fields that were bare during the hyperspectral air-
borne data acquisition in November 2010. All of the samples were com-
posed of five sub-samples, which were collected to a depth of 5 cm at
random locationswithin a 10× 10m2 square centered on the geograph-
ical position of the sampling plot, as recorded by a Garmin GPS instru-
ment. Because soil samples were collected over plowed fields, the
collected soils from 0 to 5 cm can be considered as having mixed and
homogeneous soil properties. After homogenizing the sample, approxi-
mately 20 g was allocated for clay content analysis. The initial samples
were air-dried and sieved with a 2 mm sieve prior to being transported
to the laboratory for analysis. The determination of the clay content
(granulometric fraction b 2 μm)was determined using a pipettemethod
(method NF X 31-107, particle size distribution by sedimentation, Baize
& Jabiol, 1995). The clay content of the 120 soil samples varied between
108 and 772 g/kg, and followed a normal distribution (Table 1).

A degradation in the spatial resolutions leads to a slight decrease in
the suitable surface area that can be mapped by VNIR/SWIR spectrosco-
py (Section 3.4), and leads to a decrease in the number of soil samples
associated with bare soil pixels. At 5 m, 120 soil samples were available
over the bare soil pixels. This 120 sample database is called CalBase-5m.
At 60 and 90m, only 67 and 65 soil samples, respectively, were available
over the bare soil pixels. These databases are called CalBase-60m and
CalBase-90m, respectively. The CalBase-5To30m database consists of 82
soil samples, which correlate with the images from 5 to 30 m of resolu-
tion. Although the number of reference soil samples varied depending
on the spatial resolution, the distribution and statistical characteristics
of the soil datasets did not vary. The clay content of the CalBase-
5To30m database varied from 122 to 772 g/kg, and followed a normal
distribution (Table 1). The clay content of the CalBase-60m and
CalBase-90m database varied from 122 to 772 g/kg and to 764 g/kg,
respectively, and both followed a normal distribution (Table 1).

4. Methods

4.1. Clay content prediction

Partial least squares regression (PLSR) is a multivariate model com-
monly used for soil property estimation. The PLSR method specifies a
linear relationship between a set of dependent (response) variables
(Y-variables, the clay content in our case), and a set of predictor vari-
ables (X-variables, the spectra) (Tenenhaus, 1998). A detailed descrip-
tion of the PLSR model can be found in Wold, Sjöström, and Eriksson
(2001). The general concept of PLSR is to extract the orthogonal or la-
tent predictor variables, accounting for the maximum amount of the
variation of the Y-variables. A PLSR model is developed from a training
set of N observations (the number of spectra in the calibration dataset),
with K X-variables (the number of wavelengths in the spectra), and M
Y-variables (the number of soil properties). The training data form ma-
trices X and Y, of dimensions (N × K) and (N ×M), respectively. As with
all of the factorial methods, the main goals of PLSR are the following:
i) to locate a subspace of the spectral space ℝK on which the spectra
are projected, yielding a matrix of N scores T (N × k); and ii) to perform
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a linear regression between T and Y. The maximum number of
latent predictor variables was set to 10 and was determined using the
Predicted Residual Sum of Squares (PRESS) statistic, taking care to
avoid under- and over-fitting.

An analysis was performed to detect the outliers in the calibration
dataset. Outliers are commonly defined as observations that are incon-
sistent with the majority of the data (Chiang, Pell, & Seasholtz, 2003;
Pearson, 2002), such as observations that deviate significantly fromnor-
mal values. An outlier can be defined as the following: (i) a spectral out-
lier when the sample is spectrally different from the remainder of the
samples or (ii) a concentration outlier when the predicted value has a
residual difference significantly greater than the mean of the predicted
values. To identify the spectral outliers, we used the principle of the
Mahalanobis distance (Mark & Tunnell, 1985) and applied it to principal
component analysis reduced data. The samples with aMahalanobis dis-
tance greater than 3 were identified as outliers and removed from the
calibration dataset. For the case of normally distributed data, 99% of
the data will be included in an interval of ± 3σ, which will be less
than a threshold of 3.

Prior to the quantitative statistical analysis, the reflectance was con-
verted into a “pseudo absorbance” (log [1/reflectance]), and a standard
normal variate correction was achieved for removal of additive and
multiplicative effects (Barnes, Dhanoa, & Lister, 1993).

The prediction capability of the PLSR was analyzed using two differ-
ent procedures, which were dependent on the size of the dataset
(the number of spectra associatedwith the clay content). Type1was ap-
plied to the CalBase-5m and CalBase-5To30m datasets, which contain
more than 80 variables. In this case, the dataset was divided into two
groups, one group for calibration of the PLSRmodel (3/4 of the dataset),
and a second group used for validation (1/4 of the database). The Y
values were sorted in an ascending order. The method starts by
selecting the sample with the lower clay content, and placing it in a val-
idation set. Then, the next three samples are placed in the calibration
set, and the procedure is continued by alternately placing the following
sample in the validation set and the next three samples in the calibra-
tion set. Such a process would ensure a relatively equal distribution of
the samples in both sub-datasets. Type 2 is applied to datasets with
less than 80 reference samples (CalBase-60m and CalBase-90m). In this
case, a subdivision in calibration and validation datasets would provide
too little data in the calibration set. So all of the data were used in the
calibration dataset, and no independent validation set was used.

In both types of procedures, a leave-one-out cross-validation proce-
dure was adopted to verify the prediction capability of the PLSR model
for the calibration set. N− 1 samples were used to build the regression
model from all of theN sampleswithin the dataset. Based on thismodel,
the value for the clay content of the sample not used in the development
of themodelwas predicted. This procedure was repeated for all of theN
samples, resulting in predictions for all of the samples.

4.2. Performance of the clay content prediction

The performance of the prediction was evaluated using the coeffi-
cient of correlation (R2cal) of the predicted values against the measured
values, and the root mean square errors of calibration (RMSEC).
Moreover, for Type 1, the correlation coefficient of validation (R2

val)
and the root mean square errors of the prediction in the validation set
(RMSEP) were also measured. The ratio of the performance to the devi-
ation (RPD), which is the ratio between the standard deviation in the
validation set and the RMSEP, was used. Thresholds of the RPD values
used to assess the accuracy of prediction were proposed by Chang
et al. (2001). RPD values greater than 2 indicate models with excellent
prediction capability, values between 2 and 1.4 indicate intermediate
models and values below 1.4 indicate unreliable models. However,
although RPD is largely used in soil spectroscopy, these thresholds
were not determined statistically, and RPD does not describe the
range of variation correctly, particularly for data with a non-normal
distribution. Therefore, the ratio of performance to interquartile
(RPIQ), which is the ratio of the interquartile (IQ = Q3 − Q1) to the
RMSEP recently proposed to represent the spread of the population
(Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, & McBratney,
2010), was also used.

Finally, the Variable Importance in the Projection (VIP) (Chong &
Jun, 2005; Wold et al., 2001) and the PLSR b-coefficients (Haaland &
Thomas, 1988) were used to study the significant wavelengths used
in PLSR. A wavelength is considered to be significant when both its
b-coefficient and VIP value are sufficiently large (Wold et al., 2001).
The thresholds for the VIP were set to 1 (following the recommenda-
tions by Chong & Jun, 2005), and the thresholds for the b-coefficients
were based on their standard deviations (Viscarra Rossel, Jeon, Odeh,
&McBratney, 2008). The chemometric developmentswere implement-
ed in R (version 1.17) using the pls package (Mevik & Wehrens, 2007).

4.3. Spatial structure issues

A comparison between two digital images can be performed using a
simple method, which compares the two images on a pixel by pixel
basis. However, this method does not allow for analysis of the structure
of the predicted values in a spatial dimension. Thus, variograms were
used to compare the ability of the prediction models to accurately re-
produce the spatial structures of the soil property in the study area.
Variograms measure the spatial dependence of the soil properties
using semi-variance. The average variance between any pair of sam-
pling points (i.e., the semivariance) for a soil property, Y, at any vector
of distance h apart can be determined using the following formula
(Webster & Oliver, 1990):

γ hð Þ ¼ 1
2m

Xm
i¼1

Y xið Þ−Y xi þ hð Þf g ð7Þ

where γ(h) is the average semi-variance of the soil property, m is the
number of pairs of sampling points, Y is the soil property content, x is
the coordinate of the point and h is the lag (the distance that the pairs
are apart). Variograms provide evidence of spatial autocorrelation
when the semi-variances are lower at smaller lags than at larger lags,
i.e., the sampling locations located close to each other have similar
values. The autocorrelation of clay distribution can be studied by
means of nugget (unexplained variability referring to noise in the
data), partial sill (structural component of the total variance) and
range (range of the variogram) analysis. The geostatistical operations
were performed with R (version 1.17), using the gstat package
(Pebesma, 2004).

To evaluate the rate of soil property variability that was theoretically
lost as the spatial resolution increased, the variability in the predicted
clay contents for each aggregated image was estimated from the map
of clay content predicted using the 5m_AISA airborne data. For this pur-
pose, grids corresponding to square surfaces, centered on the observed
sites with sizes corresponding to the tested spatial resolutions, were
created, and the inner-grid variability, V, was calculated according to
the following equation:

V ¼ 1
N

XN
i¼1

1
p

Xp
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zi x j

� �
−zi

� �r
ð8Þ

where, N is the number of calibration soil samples, p is the number of
pixels in the grids, zi(xj) is the predicted soil property, i.e., the clay con-
tent of the pixel xj in the grid centered on the ith calibration sample, and
zi is the mean of the predicted clay contents inside the grid centered on
the ith calibration sample. The number of pixels, p, depends on the stud-
ied spatial resolution. Because the original spatial resolution was 5 m
and the grids must be centered in the calibration pixels, the variability
could not be measured exactly for the GSD values proposed in this
study. The following five sizes were constructed: 3 × 3 pixels (p = 9,
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spatial resolution of 15 m), 5 × 5 pixels (p = 25, spatial resolution of
25 m), 7 × 7 pixels (p = 49, spatial resolution of 35 m), 13 × 13 pixels
(p = 169, spatial resolution of 65 m) and 19 × 19 pixels (p = 361,
spatial resolution of 95 m) (Fig. 3).

5. Results

5.1. Preliminary results

A reference PLSR model, following Type 1 (Section 3.4), was built
from the 5m_AISA airborne image and the 120 clay content values asso-
ciated with the 120 available soil samples. Ninety samples were
assigned to the calibration database, and thirty to the validation data-
base. The performance of this model was relatively accurate, with an
R2

cal value of approximately 0.74, an R2
val value of approximately 0.75,

a RPIQ of 3.2 and an RMSEP value of approximately 86 g/kg (Table 2),
as previously shown in Gomez, Lagacherie, and Bacha (2012). The
inner-pixel variability, V (Eq. 8), ranges from 27 g/kg (with N = 82
grids of 15 × 15 m2 and p = 9) to 66 g/kg (with N = 65 grids of
95 × 95 m2 and p = 361) (Fig. 4).

This reference PLSR model was applied to all the spectra over bare
soil from the 5m_AISA airborne image to produce a predicted clay con-
tent map. The model is referred to as the 5m_AISA_Clay map (Fig. 5a).

Contrasting clay content and soil patterns appear between the
Pliocene area, located in the southeast corner of the image, and the
Miocene area, covering the remainder of the image. The Pliocene area
exhibits low and weakly variable topsoil clay content, whereas the
Miocene area shows a large range of clay content values. Variations
within the Miocene area are also visible, and follow the geological pat-
tern formed by the alternating sandstone and marl outcrops, yielding
low (blue) and high (red) values of clay content, respectively (Fig. 5a).
The predicted clay content values of the 5m_AISA_Clay map followed a
normal distribution, were centered on 447 g/kg and had a standard de-
viation of 160 g/kg, and a skewness of 0.17 (Fig. 5c in blue).

The empirical variogram of the predicted clay content values exhib-
ited spatial structures with clear increases in the semi-variances as dis-
tance between pairs of points increased (Fig. 5d). An exponential model
was sufficient to fit the variogram of the predicted clay content values
(blue line on Fig. 5d). The theoretical variogram is characterized by a
nugget of approximately 3900, a sill of approximately 16,000 and a
range of approximately 380.
Fig. 3. Grid of 7 × 7 pixels (pink square) and 13 × 13 pixels (cyan square) which corre-
spond respectively to 35 m and 65 m of spatial resolution. The pixel in red indicates the
center location a calibration site. (For interpretation of the references to color in thisfigure
legend, the reader is referred to the web version of this article.)
5.2. Sensitivity to atmospheric effects

A PLSRmodel was built following Type 1, using the 120 spectra asso-
ciated with the bare soil pixels of the 5m_HYPXIM image, for which soil
samples were collected and clay contents were measured. The models
built from the 5m_HYPXIM and 5m_AISA images were compared
(Table 2). The best model was obtained from the 5m_AISA image
(Table 2, R2

val ≈ 0.75 and RPIQ ≈ 3.2). However, the performance of
the model obtained from the satellite-simulated data at 5 m is only
slightly less accurate (Table 2, R2

val ≈ 0.71 and RPIQ ≈ 3). Therefore,
the atmosphere appears to slightly affect the performance of the PLSR-
based prediction models.

No significant difference in the b-coefficients appears between the
models (Fig. 6a). Only the b-coefficients between 0.932 and 1.056 μm
and 1.182 and 1.25 μm were more important for the PLSR-model built
from the satellite-simulated data than from the airborne data. No signif-
icant difference in the VIP values appears between both models
(Fig. 6b). Only the VIP values between 1.5 and 1.77 μm were more im-
portant for the PLSR model built from the airborne data than from the
satellite-simulated data. However, the same important wavelengths
were identified regardless of the PLSR-model used. Finally, the analysis
of the combination of the VIP and the b-coefficients shows that themost
important bands are located from 2.2 to 2.4 μm in both images, includ-
ing the spectral absorption band of clay at 2.206 μm (Fig. 6a and b).

The PLSRmodel built following Type 1, and using the 120 spectra as-
sociatedwith the bare soil pixels of the 5m_HYPXIM image,was then ap-
plied to all the spectra over bare soil in the 5m_HYPXIM image.
Therefore, a predicted clay content map was obtained for the study
area from this PLSR model and was called the 5m_HYPXIM_Clay_1
map (Fig. 5b). No significant difference can be observed between
maps 5m_HYPXIM_Clay_1 and 5m_AISA_Clay via visual inspection
(Fig. 5a and b). The same large pedological units can be identified, indi-
cating that both of the PLSRmodels made the same relative predictions.
Moreover, no difference occurs in the absolute prediction, considering
the distribution of the predicted clay content over the entire area
(Fig. 5c). The predicted clay content values of the 5m_HYPXIM_Clay
map, follow a normal law centered on 449 g/kg, a standard deviation
of 155 g/kg and a skewness of 0.19 (Fig. 5c). Finally, no difference of pre-
diction appears, and the same pedological variations occur in the semi-
variogram of the study area (Fig. 5d). An exponential model was suffi-
cient to fit the variogram of the predicted clay content values (pink
line on Fig. 5c). Moreover, the theoretical variogram is characterized
by a nugget of approximately 3800, a sill of approximately 15,000 and
a range of approximately 380 m.

5.3. Sensitivity to degradation of spatial resolutions

The analysis of the PLSR models, built from the seven simulated-
satellite images, allowed the identification of two groups of sensors
with specific behaviors.

A first group of spatial resolutions, from 5 to 30m, corresponding to
HYPXIM, SHALOM, PRISMA and EnMAP sensors, offers accurate PLSR
models with R2

cal N 0.65, RMSEC b 100 g/kg and R2
val N 0.6 (Table 2).

The number of outliers remains stable (between 1 and 3) regardless of
the spatial resolution of this first group of sensors. Slight differences in
the prediction performance were observed in the validation dataset.
The spatial resolutions of 5 and 30 m yielded similar prediction perfor-
mances, whereas the spatial resolution of 20mprovided a better perfor-
mance, with an R2

val value of 0.81 and RPIQ value of 3.7. The spatial
resolution of 15 m provided the worst performance, with an R2

val

value of 0.7 and RPIQ value of 3 (Table 2). Therefore, these results indi-
cate that between 5 and 30 m of spatial resolution, the various model
performances do not decrease when the spatial resolution becomes
coarser, and the degradation in spatial resolutions of the images does
not linearly affect model performances. Finally, no significant difference
in the VIP and b-coefficient values appears between the first group



Table 2
Results of the PLSR models.

Type of PLSR
model

Number of latent
variables

Number of
calibration data

R2cal RMSEC
(g/kg)

Number of
validation data

R2val RMSEP
(g/kg)

RPD RPIQ Name of predicted clay map

5m_AISA Type_1 5 90 0.74 86 30 0.75 86 2 3.2 5m_AISA_Clay
5m_HYPXIM Type_1 6 90 0.74 86 30 0.71 94 1.9 3 5m_HYPXIM_Clay_1
5m_HYPXIM Type_1 6 62 0.68 99 20 0.71 90 1.9 3 5m_HYPXIM_Clay_2
10m_HYPXIM-SHALOM Type_1 6 62 0.71 94 20 0.6 105 1.6 2.6 10m_HYPXIM_Clay
15m_SHALOM Type_1 6 62 0.67 99 20 0.7 91 1.9 3 15m_SHALOM_Clay
20m_PRISMA Type_1 6 62 0.72 91.22 20 0.81 73 2.3 3.7 20m_PRISMA_Clay
30m_PRISMA-ENMAP Type_1 6 62 0.66 100 20 0.7 90 1.9 3 30m_PRISMA-ENMAP_Clay
60m_HyspIRI Type_2 4 67 0.21 156
90m_GSM Type_2 4 65 0.36 135
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models (Fig. 7a and b). The most important bands are located from 1.6
to 1.8 μmand from2.2 to 2.4 μmfor all of themodels, including the spec-
tral absorption band of clay at 2.206 μm (Fig. 7a and b). The spectral
range from 1.6 to 1.8 μm can include information on soil moisture at
the acquisition time, which may be related to clay. The visualization of
three spectra, extracted from the 5m_HYPXIM and 30m_PRISMA-
EnMAP images, and corresponding to 3 different clay contents (122,
489 and 772 g/kg), show only a slight difference of reflectance (Fig. 8).
The most important difference between spectra at both spatial resolu-
tions comes from the albedo. Nevertheless, this difference of albedo
is not the same for each target. A higher albedo exists for the
30m_PRISMA-EnMAP image than for the 5m_HYPXIM image, for targets
with clay contents of 489 and 772 g/kg. An inversely lower albedo exists
for the 30m_PRISMA-EnMAP image than for the 5m_HYPXIM image, for
targets with clay content of 122 g/kg (Fig. 8).

A second group of spatial resolutions corresponding to the HyspIRI
sensor and GSM requirement, and greater than 30m, produced inaccu-
rate PLSR models, with an R2

cal b 0.4 and RMSEC N 130 g/kg (Table 2).
The analysis of the combination of the VIP and b-coefficients shows
that only approximately ten spectral bands, centered at 2.206 μm,
were significant for the model at 60 m, and no significant spectral
bands were identified at 90 m (Fig. 9a and b).

Each PLSR model built from the 82 soil samples of the common
datasetwas applied to all the spectra over bare soil for its corresponding
simulated-satellite image, generating predicted clay maps called
5m_HYPXIM_Clay_2, 10m_HYPXIM-SHALOM_Clay, 15m_SHALOM_Clay,
20m_PRISMA_Clay and 30m_PRISMA-EnMAP_Clay. Because the PLSR
Fig. 4.Within-grid variability V of the clay contents predicted from the AISA_5m ima
models built from the simulated-satellite images at 60 and 90 m were
inaccurate, no predicted clay maps were built at these resolutions.
Regardless of the spatial resolution from 5 to 30 m, no large difference
occurs in the absolute prediction in regard to the distribution of the pre-
dicted clay content over the entire area (Fig. 10).

The Kamech catchment is characterized by strong variations in soil
patterns on a small scale, with a close succession of clay-rich areas and
clay-poor areas, oriented northwest/southeast, corresponding to marl
and sandstone outcrops, respectively. The 5m_HYPXIM_Clay_2 map,
which was restricted to the Kamech catchment, shows these variations
in the soil pattern (Fig. 11a). Certain mixed areas also appear in transi-
tion areas between these outcrops, and in shoal areas. The reduction
in the spatial resolution resulted in a decrease in the number of bare
soil pixels that can be used in VNIR/SWIR spectrometry, providing
only a partial view of the succession of the clay-rich areas and clay-
poor areas (Fig. 11). Particularly, clay-rich areas with a width less than
60 m disappear when a spatial resolution of 30 m is used (Fig. 11e).
For the intermediate spatial resolutions (10 to 20 m), marl and sand-
stone outcrops can still be observed, but the boundaries between
these outcrops are unclear (Fig. 11b, c and d).

6. Discussion

6.1. Impact of atmosphere compensation

From our simulations of the satellite data, the atmosphere
compensation appears to only slightly affect the performances of the
ge over surfaces of 15 × 15 m, 25 × 25 m, 35 × 35 m, 65 × 65 m and 95 × 95 m.



Fig. 5. a) 5m_AISA_Clay map, b) 5m_HYPXIM_Clay_1 map, c) histograms and d) empirical variograms (points) and theoretical variograms fitted (lines) of clay predictions of the
5m_AISA_Clay (blue) and 5m_HYPXIM_Clay_1 (red) maps (with lag of 100m). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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PLSR-based prediction models. The best model was obtained from the
AISA-DUAL airborne image. The performance of the PLSRmodel obtain-
ed from the satellite-simulated data at 5 m is only slightly less accurate.
The most important difference in the performance may occur from a
misunderstanding of the atmosphere. However, in our case study, the
water vapor content is very low because such an error in this parameter
will not induce a significant difference in the PLSR performance. Fur-
thermore, the visibility during the flight was very high (40 km, close
to Rayleigh conditions). Therefore, the effect of the aerosols on the sim-
ulated satellite and the retrieved reflectance data can both be consid-
ered negligible. For such a low aerosol load, the type of aerosol has no
effect. Considering the previous and numerous validation studies
conducted using COMANCHE (Miesch et al., 2005) and COCHISE
(using Modtran kernel), the errors introduced by the models them-
selves can be neglected. The results obtained from the satellite-
simulated data at 5 m correctly reflect the performances that will be
obtained from future satellite images at 5 m of spatial resolution, and
under these atmospheric conditions.

6.2. Short-scale clay content variations as a driver of spatial resolutions
impact

The spatial resolutions from 5 to 30 m appear to only slightly affect
the performances of the PLSR-based prediction models (Table 2). The
results of the calibration and validation datasets indicate that the PLSR
model performances do not decrease when the spatial resolution be-
comes coarser, and the degradation in spatial resolution of the image
does not linearly affect the model performance. The spatial resolutions
of 5 and 30myielded similar prediction performances,whereas the spa-
tial resolution of 20 m provided better performance. The slight differ-
ences in the performances may arise from the calibration dataset,
which contains an acceptable, but not a significant number of data to



Fig. 6. b-Coefficients (left) and VIP (right) values for both PLSR models built from the 5m_HYPXIM and 5m_AISA images, using 120 soil samples. The spectral absorption band of clay at
2.206 μm is located at the vertical gray line over both plots. The horizontal lines indicate thresholds of b-coefficients (their standard deviation) and VIP (threshold at 1).
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calibrate the models. The slight effect of the spatial resolutions on the
PLSR model performances may be explained by the low rate of short-
scale clay content variations, which represents only 22% of the whole
variance of clay content in our study area. Indeed, the clay samples col-
lected for characterizing surfaces of 10 × 10m2were also representative
of surfaces of 30 × 30 m2 because differences in clay contents remain
low within such small areas.

6.3. Field size as a driver of spatial resolutions impact

The results revealed a failure in the performances of the PLSR-based
prediction models beyond 30 m of spatial resolution, which can be at-
tributed to two cumulative errors. The first error may arise from the
Y-variables of the PLSR models (clay contents), and the second
error may be due to the X-variables (soil spectra). The error due to the
Y-variables (clay contents) is linked to the natural pedological varia-
tions in the study area. The soil samples collected over a 10 × 10 m2
Fig. 7.b-Coefficients (left) andVIP (right) values for PLSRmodels built from simulated-satellite i
2.206 μm is located at the vertical gray line over both plots. The horizontal lines indicate thres
model based on the 5m_HYPXIM data).
surface would not be representative of surfaces larger than 30 m. The
clay contentmeasured over the 10 × 10m2 surfacewould be excessive-
ly different from the clay content of the 90 × 90 m2 surface. However,
the error in the Y-variables cannot completely explain the poor perfor-
mances observed beyond 30m because the inner-grid variability of clay
content, discussed above, increases no more than linearly beyond 30 m
(Fig. 4). The error due to the X-variables (soil spectra) is mainly driven
by the changes in the topsoil surface conditions, which add a “noise” to
the calibration spectra. In the study area, themean area of the cultivated
fields is 0.56 ha (Jenhaoui, Raclot, & Lamachère, 2008). Therefore, a pixel
of 60× 60m2 or 90 × 90m2 can straddle two fields, and can include two
types of surface roughness and soil humidity due to the different types
of plowing (Fig. 3).

It is also worth noting that degradation in spatial resolution leads to
a slight decrease in the suitable surface area that can be mapped using
VNIR/SWIR spectroscopy (Section 3.4), and leads to a decrease in the
number of soil samples associatedwith bare soil pixels.When the pixels
mages, using the 82 soil samples of theCalBase-5To30mdataset. The spectral band of clay at
holds of VIP (threshold at 1) and b-coefficients (calculated from the b-coefficients of the



Fig. 8. Reflectance spectra of 3 pixels corresponding to 3 different clay contents (122, 489 and 772 g/kg) extracted from the 5m_HYPXIM and 30m_PRISMA-EnMAP images.
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of the study area become coarser, an increasing number of pixels be-
come inadequate for calibration and prediction because they more
often include heterogeneous land use. The smaller the field size, the
more prominent the phenomenon is. VNIR-SWIR airborne spectroscopy
has proven to be a powerful tool for estimating soil properties over
pixels covered by bare soils, whereas the applicability of spectroscopic
techniques decreases when the pixels are mixed, such as when a soil
surface is partially covered with vegetation (Bartholomeus et al.,
2010; Ouerghemmi et al., 2011). However, this limitation would not
Fig. 9. b-Coefficients (left) and VIP (right) values for PLSRmodels built from the simulated-sate
and CalBase-90m datasets respectively. The spectral band of clay at 2.206 μm is located at the ve
1) and b-coefficients (calculated from the b-coefficients of the model based on the 60m_HyspI
be insurmountable if the development of the unmixing methods be-
comes an extensive research area.

6.4. Exploration of results for future hyperspectral-satellite-based soil
predictions

The relation between spatial resolutions and performance of clay
content predictions found in this study is specific to this area, and
might differ for other areas, soil properties or pedological contexts.
llite images at 60 and 90m of spatial resolution, using the soil samples of the CalBase-60m
rtical gray line over both plots. The horizontal lines indicate thresholds of VIP (threshold at
RI data).



Fig. 10.Histograms of clay predictions obtained over the entire area, from the 5m_HYPXIM, 10m_HYPXIM-SHALOM, 15m_SHALOM, 20m_PRISMA and 30m_PRISMA-ENMAP images using the
82 soil samples of the CalBase-5To30m dataset.
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Nevertheless, the slight effect of the spatial resolutions from 5 to 30 m
on the PLSR model performances can reasonably be extrapolated to
areas where the soil properties exhibit moderate spatial variabilities at
short distances, as was observed in this case study. An analysis of the
variograms of the clay contents gathered by McBratney and Pringle
(1999) (Fig. 2b, p 132) showed that 77% of these variograms had a
smaller semi-variance at a lag value of 30 m than the variogram in our
case study. This finding suggests that the results obtained in this study
could be extrapolated over a significant portion of the planet. Similarly,
the decrease in performances observed beyond 30 m is closely related
with the small sizes of fields in our study area (mean size = 0.56 ha).
However, these may represent important surfaces, such as those cov-
ered by traditional and familial agrosystems.

Finally, by identifying two main drivers of spatial resolution impact,
namely short scale soil variability and field size, this study paves the
way to an a priori assessment of the performances of hyperspectral-
satellite-based soil predictions frommeasurable properties of continen-
tal surfaces. More studies similar to the one presented in this paper will
be necessary to strengthen this assessment.
6.5. Comparisons with other targeted properties of continental surfaces

Based on a literature review, although different spatial resolutions
are estimated to be optimal depending on the application, these optimal
resolutions are all included from 6 to 20 m. Rahman et al. (2003) found
that a pixel size of 6 m or less would be optimal for studying a canopy-
to watershed-level ecosystem, and a pixel size of 20 m or more would
imply a failure to identify the variability of the plants. Thorp et al.
(2013) showed that the optimal spatial resolution for studying vegeta-
tion features in their study area was less than 15 m. Therefore, the soil
does not present high specificities regarding spatial resolutions of future
hyperspectral satellite sensors.
6.6. Future research

Residue cover, soil roughness and moisture content are environ-
mental factors that are known to affect soil spectra collected in the
field and in laboratory (e.g., Liu et al., 2002; Ouerghemmi et al., 2011).
Therefore, these environmental factors are expected to also affect the
soil spectra recorded by imaging sensors, including proxy, Unmanned
Aerial Vehicles, airborne or satellite sensors. Currently, few publications
address the consideration of these environmental factors in spectra col-
lection and prediction models (e.g., Haubrock et al., 2008; Lagacherie
et al., 2008). Futures research should focus on how spectral information
from surface soils and soil predictionmodels is affected by disturbances
in soil surface conditions, such as roughness, residues and variations in
soil moisture, and at different measurement scales (i.e., different spatial
resolutions). Taking into account environmental factors may help the
research community to build more performant prediction models, in
waiting the hyperspectral satellite data.
7. Conclusions

Aerial Vis–NIR hyperspectral imaging sensors have previously shown
their effectiveness for use in soil surface mapping. Therefore, the avail-
ability of future hyperspectral satellite data might offer considerable op-
portunities for mapping topsoil properties over large areas. In this study,
we found that spatial resolutions from 5 to 30 m provided suitable sur-
face clay contents maps in our Mediterranean study area. We also dem-
onstrated that the impact of spatial resolution is dependent on the short-
scale spatial variability of the soil property and field size. Thorp et al.
(2013) found that the spatial resolution is of secondary importance to
the spectral resolution formapping green vegetation, nonphotosynthetic
vegetation and bare soil using a Multiple Endmember Spectral Mixture
(MESMA). All the future hyperspectral spaceborne sensors are expected



Fig. 11. a) 5m_HYPXIM_Clay_2 map, b) 10m_HYPXIM-SHALOM_Claymap, c) 15m_SHALOM_Claymap, d) 20m_PRISMA_Claymap and e) 30m_PRISMA-ENMAP_Claymap over the Kamech
catchment (upper rectangle in Fig. 1b).
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to acquire reflectance data with similar spectral resolution of approxi-
mately 10 nm (Staenz et al., 2013), which is close to the resolution
used by Vis–NIR hyperspectral imaging airborne sensors, such as
HYMAP or AISA-DUAL. As these airborne sensors have already shown
their potentials for soil surface property mapping, we can be confident
in the performances of future hyperspectral spaceborne sensors. Never-
theless, it would be interesting to study the sensitivity of soil property
prediction results to degradation in spectral resolutions, as has been ini-
tiated by Casa, Castaldi, Pascucci, Palombo, and Pignatti (2013), aswell as
the signal to noise ratio. This could potentially improve the design of
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future spaceborne sensors, in terms of spectral resolutions and signal to
noise ratio. Finally, the optimal spatial resolutions found in this study
are specific to this area, and likely differ in other areas with different
soil properties. To reinforce these conclusions and the guideline, this
study could be enlarged to include additional soil properties and addi-
tional pedological settings.
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