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Introduction

Functional modeling of hyperspectral images



Hyperspectral sensors and missions

Properties of hyperspectral images increase on a regularly basis
I Higher spatial resolution,
I Higher temporal resolution,
I Higher number of spectral channels.
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From spectral variables to spectral curves

x X

Spectral variables

We observe a random vector x of Rd and our statistical processing (classification,
unmixing, . . . ) is invariant to a random permutation of the spectral variables.

Spectral curves
We observe a random curve X of F and we can integrate some curves properties
(derivative, smoothness) in the statistical processing.
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Multivariate versus functional modeling

Multivariate

x =
[
x(λ1), . . . ,x(λd)

]
Card(Rd)=d
x(m) → numerical differences
〈x, θ〉 =

∑d
i=1 x(λi)θ(λi)

Functional

X =
{
X (λ), λ ∈ [λmin, λmax]

}
Card(F)=∞
X (m) → explicit formulae
〈X , θ〉 =

∫ λmax
λmin

X (λ)θ(λ)dλ
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Introduction

Contributions



Contributions of this work

Nonparametric functional regression (and classification) applied to
hyperspectral imagery.
Heteroscedastic noise assumption in the observed spectra.
Nested kernels estimator.
Application to

Regression Simulated PROSAIL data,
Classification HYSPEX hyperspectral data.
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Nested kernels estimator

Functional nonparametric regression



Non parametric model

Learning set : (Xi , yi)n
i=1.

y = r(X ) + ε where ε ∼ N (0, σ2).
r is a regression operator with some regularity-type conditions

r̂(X ) =
∑n

i=1 yiKr
(
h−1

r δ(X ,Xi)
)∑n

i=1 Kr
(
h−1

r δ(X ,Xi)
)

I Kr is an asymmetric kernel,
I hr ∈ R∗+ is a smoothing parameter,
I δ is a proximity measure between two curves.

X is supposed noise-free, but in practice we only observe X ∗, a
contaminated version of the spectra :

X ∗(λ) = X (λ) + η(λ)

where η is a random process independent of (X , y) such as
I E[η(λ)] = 0,
I E[η(λ)η(λ′)] = σ2

η(λ)1λ=λ′ ,
I σ2

η twice differentiable.
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Nested kernels approach

Estimate both the noise-free spectra and the regression operator.
Nesting two kernel estimators

ˆ̂r(X ) =
∑n

i=1 yiKr
(
h−1

r δ(X , X̂i)
)∑n

i=1 Kr
(
h−1

r δ(X , X̂i)
)

where X̂i is obtained through

X̂i(λ) =
∑d

j=1 X
∗
i (λi)Ks

(
hs(λj)−1(λ− λj)

)∑d
j=1 Ks

(
hs(λj)−1(λ− λj)

) .

hs is a smoothing parameter depending on the variable λ.
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Nested kernels estimator

Properties



Main theoretical results

Under some mild conditions, it is possible to prove

1. The nested estimator ˆ̂r converges to the true operator r .
2. The rate of convergence is not decreased in comparison to the situation

where noise-free samples are observed as soon as d is much larger than n.
3. The rate of convergence is increased when the ratio d/n is increased.
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Application to the statistical analysis of
hyperspectral images

Estimation of Chlorophyll content



Data set

Simulated data using PROSAIL (J.B. Féret).
5000 samples (n=5000) and 2101 wavelengths (d=2101) from 400 to 2500
nm.
Heteroscedastic noise has been added.
500 spectra were randomly used to build ˆ̂r .
500 spectra were randomly used to compute the relative mean square error :

RMSE =
∑500

i=1(yi − ˆ̂r(Xi))2∑500
i=1(yi − ȳ)2

Smoothing parameters have been optimized with 5-CV.
50 repetitions.
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Results

Proximity measure : L2 norm on the first derivative w.r.t. the spectral
variable of the spectra.
Results : Nested kernels estimator and kernel estimator.
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Application to the statistical analysis of
hyperspectral images

Classification of hyperspectral images



Data set 1/2

Data set acquired with HYSPEX sensor.
32224 pixels (n=32224), with 50 cm as spatial resolution and 160 spectral
bands (d=160).
12 woody species have been identified during field campaigns.
Competitive methods were :

I SVM,
I GMM with ridge regularization,
I Random Forest,

B-Splines expansion has been used for the multivariate methods.
30 spectra per class used to build ˆ̂r , the remaining are used to compute the
error rate.
50 repetitions.
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Data set 2/2
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Results

Proximity measure : PLS basis.
Results
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Conclusions

3 Functional modelling of spectral curves.
3 Heteroscedastic noise model.
3 Good performances w.r.t multivariate methods.
3 Flexible framework to define proximity measures

Derivatives,
Subspaces (PCA, PLS . . . ).

5 Computing time.
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