Super-Resolution: a pre-processing step for Hyperspectral Pansharpening

> LONCAN Laëtitia 3^{ème} année Directeurs de thèse Sophie FABRE (ONERA/DOTA) Jocelyn CHANUSSOT (GIPSA-LAB) Encadrant: Xavier BRIOTTET (ONERA/DOTA)

I) Context

- II) State of the art
- III) Proposed approach: Super-resolution PAN
- IV) Conclusion & perspectives

Context: Preparation of the spatial Earth's observatory mission, HYPXIM

chess

3

Panchromatique image (PAN)

- High spatial resolution
- Poor spectral resolution
- Give information on the geometry of the scene

Context: Preparation of the spatial Earth's observatory mission, HYPXIM

Panchromatique camera: High spatial resolution image (1,8 m)
 Hyperspectral sensor: High spectral resolution image (8 m)

Hyperspectral image (HS)

- Low spatial resolution
- High spectral resolution
- Give information on the composition of the scene

Context: Preparation of the spatial Earth's observatory mission, HYPXIM

 \rightarrow Targeted application classification of urban area (< 5 m)

Context: Preparation of the spatial Earth's observatory mission, HYPXIM

 \rightarrow Targeted application classification of urban area (< 5 m)

Panchromatique image (PAN) 1,8m

Context: Preparation of the spatial Earth's observatory mission, HYPXIM

 \rightarrow Targeted application classification of urban area (< 5 m)

Panchromatique image (PAN) 1,8m

Ideal result of the fusion 1,8m

- Good spatial and spectral resolutions
- Give information on both the geometry and the nature of the scene

I) Context

II) State of the art

- III) Proposed approach: Super-resolution PAN
- IV) Conclusion & perspectives

Component Substitution (CS)

Method originally designed for MS + PAN fusion → Spatial information is well preserved →Can create spectral distorsion

Example of methods: -Principal Component Analysis (PCA) [Chavez1989] -Gram Schmidt adaptive (GSA) [Laben2000]

PAN Image

HS upscaled

PAN Image

14

ONERA

THE FRENCH AEROSPACE LAR

Other components

HS upscaled

For PCA: Intensity Component = First **Principal Component**

Intensity Component

PAN Image

ONERA

THE FRENCH AEROSPACE LAR

- Component Substitution (CS)
- Multi-Resolution Analysis (MRA)

Method originally designed for MS + PAN fusion Similar to CS method, main difference \rightarrow use spatial filter

→Spectral information is well preserved
→Can create some spatial blur

Example of methods:

-Modulation transfert function Generalized Laplacian Pyramid with High Pass Modulation (MTF-GLP-HPM) [Vivone2014] \rightarrow Laplacian Pyramid

-Smoothing filter-based intensity modulation (SFIM) [Liu2000] \rightarrow single linear time invariant low pass filter

HS upscaled

PAN Image

gipsa-lab

DGA

ONERA

THE FRENCH AEROSPACE LAN

II) MultiResolution Analysis (MRA)

Details extraction and injection model using Laplacian Pyramid method

DGA

- Component Substitution (CS)
- Multi-Resolution Analysis (MRA)
- Hybrid

Combine elements from differents families

Example: Guided Filter PCA (GFPCA) [LiaoSubmitted]

- Component Substitution (CS)
- Multi-Resolution Analysis (MRA)
- Hybrid
- Matrix Factorization

Originally designed for MS + HS

Use unmixing to write MS and HS image as a product of two matrices : abundance and endmembers

Example: Coupled Non-negative Matrix Factorization (CNMF) [Yokoya2012]

- Component Substitution (CS)
- Multi-Resolution Analysis (MRA)
- Hybrid
- Matrix Factorization
- Bayesian Method

Originally designed for MS + HS Use bayesian method to modelise the fusion process Sensor characteristic is needed

Methods: [Wei2015] [Simoes2015]

- Component Substitution (CS)
- Multi-Resolution Analysis (MRA)
- Hybrid
- Matrix Factorization
- Bayesian Method

A review paper has been written on this topic:

Review paper on Hyperspectral Pansharpening:

L. Loncan, L. B. Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. Simoes, J-Y. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, and N. Yokoya, "Hyperspectral pansharpening: A review, to appear in IEEE Geoscience and Remote Sensing Magazine

II) Dataset and evaluation

PAN

Reference

HS upscaled

Dataset information

- Rural area from Camargue (France)
- Source data: Airbone HS data acquired with Hymap
- Simulated dataset
- Spatial resolution: PAN: 2 m, HS: 8 m (ratio 4)

II) Dataset and evaluation

PAN

Reference

HS upscaled

Criteria for the evaluation of the results: Wald's protocole + Visual spatial analysis + Visual spectral analysis

- \rightarrow CC: cross correlation (ideal value 1) Spatial •
 - \rightarrow Spectral SAM: spectral Angle Mapper (ideal value 0)
 - Global \rightarrow RMSE: root mean squared error & ERGAS*: Dimensionless Global Error (ideal value 0)

*« Erreur relative globale adimensionnelle de synthèse »

II) Results: Visual analysis (0,4 – 0,8 µm domain)

PAN

Reference

HS upscaled

DGA

SFIM

MTF-GLP-HPM

GFPCA

CNMF

 gipsa-lab

ONERA

HE FRENCH AEROSPACE LA

II) Results: Visual analysis (0,4 – 0,8 µm domain)

Reference

HS upscaled

DGA

SFIM

MTF-GLP-HPM

GFPCA

CNMF

HE FRENCH AEROSPACE L

II) Results: Visual spectral analysis

Good performance on homogenous area but some problem with transition area

 \rightarrow Case of mixed pixels is generally ignored

- I) Context
- II) State of the art

III) Proposed approach: Super-resolution PAN

IV) Conclusion & perspectives

PAN

HS

fusion result

Reference

Currently, most of the methods do not modify the spectral information of HS \rightarrow Mixed pixels will stay mixed, which creates halo around small objects

PAN

HS

fusion result

Reference

Currently, most of the methods do not modify the spectral information of HS

 \rightarrow Mixed pixels will stay mixed, which creates halo around small objects

Solution:

PAN

HS

fusion result

Reference

Currently, most of the methods do not modify the spectral information of HS

 \rightarrow Mixed pixels will stay mixed, which creates halo around small objects

Solution:

PAN

HS

fusion result

Reference

Currently, most of the methods do not modify the spectral information of HS

chess

 \rightarrow Mixed pixels will stay mixed, which creates halo around small objects

Solution:

HS

fusion result

Reference

\overline 😹 👬 📷 📷 📷

Currently, most of the methods do not modify the spectral information of HS

 \rightarrow Mixed pixels will stay mixed, which creates halo around small objects

Solution:

III) Step 1: Endmembers Extraction

Local endmember \rightarrow to take into account spectral variability

Endmembers extraction step done by using VCA

DGA

III) Step 2: detection of pure/mixed pixels

Hypothesis: Homogeneous area in PAN \rightarrow pure HS pixel

Local endmember \rightarrow Pure pixels close to mixed pixels

DGA

III) Step 3: Unmixing of mixed pixels

Principle:

Each candidate endmember -> converted in PAN domain

Spatially arrange the converted endmembers to mimic PAN information with respect to the abundance information

gipsa-lab

III) Step 4: Addition of spatial information

Simple method based on a gain to add spatial information without modifying spectral information

III) Evaluation of the super-resolution step on a synthetic image

method	Rate of reconstruction error		
Super-resolution PAN	0,0001%		

DGA

42

III) Evaluation of the full method on real dataset (extract)

Presentation of the real dataset

(a) PAN image

(b) Ref image Results of the fusion

MTF-GLP-HPM

GSA

CNMF

Bayesian sparse

Super-resolution

			E	D
i harring a start	 E-	al Lista and	Diseasia	

DGA

ONERA

THE FRENCH AEROSPACE

reference

Super-resolution

GSA

MTF-GLP-HPM

CNMF

Bayesian sparse

DGA

- Most of the methods from the State of the Art have the same limitation
 - \rightarrow Transition area (mixed pixels)
- To address this issue some preliminary work has been presented
 → Preliminary unmixing step to improve result at subpixel level
 in transition area
- More tests need to be done to evaluate this approach:
 - → Test on different landscape (particularly urban area: ANR HYEP)
 - \rightarrow Test with different ratio

ONERA

OPEN REMOTE SENSING HOME CODES ABOUT US

Review paper on Hyperspectral Pansharpening:

L. Loncan, L. B. Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. Simoes, J-Y. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, and N. Yokoya, "Hyperspectral pansharpening: A review, to appear in IEEE Geoscience and Remote Sensing Magazine

Codes for the toolbox are available at: http://OpenRemoteSensing.net/

[Chavez1989] P. S. Chavez and A. Y. Kwarteng, "Extracting spectral contrast in landsat thematic mapper image data using selective principal component analysis," Photogramm. Eng. Remote Sens., vol. 55, no. 3, pp. 339–348, 1989.

[Laben2000] C. Laben and B. Brower, "Process for enhacing the spatial resolution of multispectral imagery using pansharpening," U.S. Patent US6 011 875, 2000.

[Vivone2014] G. Vivone, R. Restaino, M. Dalla Mura, G. Licciardi, and J. Chanussot, "Contrast and error-based fusion schemes for multispectral image pansharpening," IEEE Geosci. and Remote Sensing Lett., vol. 11, no. 5, pp. 930–934, May 2014.

[Liu2000] J. G. Liu, "Smoothing filter based intensity modulation: a spectral preserve image fusion technique for improving spatial details," Int. J. Remote Sens., vol. 21, no. 18, pp. 3461–3472, Dec. 2000

[LiaoSubmitted] W. Liao, X. Huang, F. Coillie, S. Gautama, A. Pizurica, W. Philips, H. Liu, T. Zhu, M. Shimoni, G. Moser, and D. Tuia, "Processing of multiresolution thermal hyperspectral and digital color data: Outcome of the 2014 IEEE GRSS data fusion contest," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Submitted.

[Yokoya2012] N. Yokoya, T. Yairi, and A. Iwasaki, "Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion," IEEE Trans. Geosci. and Remote Sens., vol. 50, no. 2, pp. 528–537, Feb. 2012.

[Wei2015] Q. Wei, J. M. Bioucas Dias, N. Dobigeon, and J.-Y. Tourneret, "Hyperspectral and multispectral image fusion based on a sparse representation," IEEE Trans. Geosci. and Remote Sens., vol. 53, no. 7, pp. 3658–3668, Sept. 2015.

[Simoes2015] M. Simoes, J. Bioucas Dias, L. Almeida, and J. Chanussot, "A convex formulation for hyperspectral image superresolution via subspace-based regularization," IEEE Trans. Geosci. and Remote Sens., 2015, to appear.

[WeiToAppear] Q.Wei et al, "Fast multi-band image fusion based on solving a Sylvester equation", to appear, IEE Trans. Image Process.

