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Goals

1. Analysis of hyperspectral data by means of Canonical
Polyadic (CP) tensor decomposition.
1.1 Time-series.
1.2 Multi-angle acquisitions.
1.3 Conventional images.

2. Physical interpretation of the one-rank factors in terms of
spectral unmixing.
3. Applications :

3.1 Snow cover maps of the Alps : collaboration with LTHE
laboratory and MeteoFrance.

3.2 Analysis of Martian surface : collaboration with IPAG
(Mars-ReCo project).
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Hyperspectral tensors

> Hyperspectral matrix : X/*/.
® ] :number of pixels (spatial way).
® J :number of bands (spectral way).
> Hyperspectral tensor : X1*/xK,
® K :number of time acquisitions (temporal way : SNOW
project).
® K :number of angles (angular way : Mars-ReCo project).
® What about data cubes (rows x columns x bands) ?
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Non-negative CP decomposition

> Formulation :
R

')(;ij ~ Z AirBjerzr)\r- (1)
r=1

R € N, :tensor non-negative rank.
ATXE - gpatial factors.

B/*% : spectral factors.

CHEXE - temporal/angular factors.
AXE - scaling diagonal matrix.
Everything is non-negative !

> Compact representation : X ~ (A,B,C) A.
> Optimization problem :

minimize || X — (A,B,C)A|%
W.LL. A,B,C,A (2)
subjectto A >0,B>0,C*>0







> Best lower non-negative rank approximates always exist —
The problem is well-posed.




> Best lower non-negative rank approximates always exist —
The problem is well-posed.

> There exist upper bounds to the tensor rank, R,, that ensure
unigueness -> But only for exact decompositions !




> Best lower non-negative rank approximates always exist —
The problem is well-posed.

> There exist upper bounds to the tensor rank, R,, that ensure
unigueness -> But only for exact decompositions !

> (Recently proved) If condition R < R,, holds true — Almost
always the best lower non-negative rank approximate is
unique.
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Algorithms

> The CP optimization problem is highly non-convex.
> Yet many algorithms provide rather precise computation.
> These algorithms can be divided into two main classes :
® All-at-once gradient-based descent, e.g. : all CP parameters
are updated at the same time using a gradient scheme and
non-negativity constraints are implemented through barriers
or soft penalizations.
® Alternating minimization : the cost function is minimized in an
alternating way for each factor (A, B or C) while the others
are fixed.

> Drawback : These algorithms are computationally expensive
— Useless for large tensors.
® Proposed solution : compression-based NN-CP
decomposition.




Compression-based NN-CP decomposition

General approach [1] :

1. Compress the original tensor X/*% on a small tensor
gRLRz,Rs_

® Supposition : the compressed tensor G contains almost the
same information as the original tensor X'.

[1] Cohen, J., Cabral-Farias, R., Comon, P.; "Fast Decomposition of Large Nonnegative Tensors," IEEE Signal
Processing Letters, 22(7), pp. 862-866, 2015.
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Compression-based NN-CP decomposition

General approach [1] :

1. Compress the original tensor X/*% on a small tensor
gRLRz,Rz_

® Supposition : the compressed tensor G contains almost the
same information as the original tensor X.
2. Compute the CP decomposition of G.

® Consider non-negativity constraints of X’ in the optimization
problem.
® Estimate the compressed factors A1 xE BF:xF gnd CHs <k,

3. Uncompress the estimated one-rank factors A, B. and C.
to obtain the original factors A/*% B/*E gnd CK*E,

[1] Cohen, J., Cabral-Farias, R., Comon, P.; "Fast Decomposition of Large Nonnegative Tensors," IEEE Signal
Processing Letters, 22(7), pp. 862-866, 2015.




Experimental results with time series




> 44 daily MODIS acquisitions with low cloud coverage.
> Pre-processed to increase spatial resolution (250m).
> Dimensions : 4800 x 7 x 44.
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[2] Veganzones, M.A.; Cohen, J.; Cabral-Farias, R.; Chanussot, J.; Comon, P.; "Nonnegative tensor CP decomposition
of hyperspectral data," IEEE Transactions on Geoscience and Remote Sensing, 54(5), pp. 2577-2588, 2016.




Experimental methodology (1)

> Competing algorithms :
® Compression-based CP algorithms : CCG and ProCoALS.
® Conventional CP algorithm : ANLS.
® Conventional day-basis full-constrained spectral unmixing
(FCLSU).

> Groundtruth : 8 spectra (on-field acquisitions).
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Experimental methodology (I1)

> We run 50 Monte Carlo runs for each of the algorithms for a
set of different rank values in the range R € [5, 15].

> For the compression-based CP algorithms, the compressed
tensor, X ., has dimensions 175 x 7 x 25.

> Quality measures :
® Reconstruction error : average RMSE.
® Angular error w.r.t. the groundtruth spectral signatures.
® | inear Pearson correlation w.r.t. the spatial abundances
obtained by the FCLSU.
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Spatial factors interpretation

Average maximum correlation
Average maximum correlation

Average maximum correlatio

(c) ProCoALS




Spatial factors interpretation

> Best run with rank R = 8.

T

Permanent snow/ice

Seasonal snow/ice (type 1)  Seasonal snow/ice (type 2)

Seasonal vegetation (type 1) Seasonal vegetation (type 2)
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Are hyperspectral data cubes tensors ?

> Hyperspectral images are often provided, not as
non-negative matrices, X € R.*”, but as data cubes,
X € R/ ‘where I, and 1. denote the number of rows
and columns respectively, being I = I, ..

[3] Veganzones, M.A. ; Cohen, J. ; Cabral-Farias, R.; Usevich, K., Drumetz, L. ; Chanussot, J.; Comon, P.; "Canonical
Polyadic decomposition of hyperspectral patch-tensors," 2016 EUSIPCO Conference (submitted).
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Are hyperspectral data cubes tensors ?

> Hyperspectral images are often provided, not as
non-negative matrices, X € R.*”, but as data cubes,
X € RI*/ ‘where I, and I, denote the number of rows
and columns respectively, being I = I, ..

> ltis possible to think of the data cube as a tensor
representation of the image, allowing to apply tensor
analysis techniques.

> This is fine ! — Employed for de-noising, compression, ...

> ... but, in general, it is not possible to suppose a low rank,
that is, a small R.

> Proposed solution : patch-tensors [3].

[3] Veganzones, M.A. ; Cohen, J. ; Cabral-Farias, R.; Usevich, K., Drumetz, L. ; Chanussot, J.; Comon, P.; "Canonical
Polyadic decomposition of hyperspectral patch-tensors," 2016 EUSIPCO Conference (submitted).
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