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Goals

1. Analysis of hyperspectral data by means of Canonical
Polyadic (CP) tensor decomposition.
1.1 Time-series.
1.2 Multi-angle acquisitions.
1.3 Conventional images.

2. Physical interpretation of the one-rank factors in terms of
spectral unmixing.

3. Applications :
3.1 Snow cover maps of the Alps : collaboration with LTHE

laboratory and MeteoFrance.
3.2 Analysis of Martian surface : collaboration with IPAG

(Mars-ReCo project).

Miguel A. Veganzones Compression-based NN-CP 4 / 21



Goals

1. Analysis of hyperspectral data by means of Canonical
Polyadic (CP) tensor decomposition.
1.1 Time-series.
1.2 Multi-angle acquisitions.
1.3 Conventional images.

2. Physical interpretation of the one-rank factors in terms of
spectral unmixing.

3. Applications :
3.1 Snow cover maps of the Alps : collaboration with LTHE

laboratory and MeteoFrance.
3.2 Analysis of Martian surface : collaboration with IPAG

(Mars-ReCo project).

Miguel A. Veganzones Compression-based NN-CP 4 / 21



Goals

1. Analysis of hyperspectral data by means of Canonical
Polyadic (CP) tensor decomposition.
1.1 Time-series.
1.2 Multi-angle acquisitions.
1.3 Conventional images.

2. Physical interpretation of the one-rank factors in terms of
spectral unmixing.

3. Applications :
3.1 Snow cover maps of the Alps : collaboration with LTHE

laboratory and MeteoFrance.
3.2 Analysis of Martian surface : collaboration with IPAG

(Mars-ReCo project).

Miguel A. Veganzones Compression-based NN-CP 4 / 21



Hyperspectral tensors

> Hyperspectral matrix : XI×J .
• I : number of pixels (spatial way).
• J : number of bands (spectral way).

> Hyperspectral tensor : X I×J×K .
• K : number of time acquisitions (temporal way : SNOW

project).
• K : number of angles (angular way : Mars-ReCo project).
• What about data cubes (rows × columns × bands) ?
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Non-negative CP decomposition

> Formulation :

Xijk ≈
R∑

r=1

AirBjrCkrλr. (1)

• R ∈ N+ : tensor non-negative rank.
• AI×R : spatial factors.
• BJ×R : spectral factors.
• CK×R : temporal/angular factors.
• ΛR×R : scaling diagonal matrix.
• Everything is non-negative !

> Compact representation : X ≈ (A,B,C)Λ.
> Optimization problem :

minimize ‖X − (A,B,C)Λ‖2F
w.r.t. A,B,C,Λ

subject to A � 0,B � 0,C � 0

(2)
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Properties

> Best lower non-negative rank approximates always exist→
The problem is well-posed.

> There exist upper bounds to the tensor rank, Ro, that ensure
uniqueness -> But only for exact decompositions !

> (Recently proved) If condition R ≤ Ro holds true→ Almost
always the best lower non-negative rank approximate is
unique.
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Algorithms

> The CP optimization problem is highly non-convex.
> Yet many algorithms provide rather precise computation.
> These algorithms can be divided into two main classes :

• All-at-once gradient-based descent, e.g. : all CP parameters
are updated at the same time using a gradient scheme and
non-negativity constraints are implemented through barriers
or soft penalizations.
• Alternating minimization : the cost function is minimized in an

alternating way for each factor (A, B or C) while the others
are fixed.

> Drawback : These algorithms are computationally expensive
→ Useless for large tensors.
• Proposed solution : compression-based NN-CP

decomposition.
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Compression-based NN-CP decomposition

General approach [1] :
1. Compress the original tensor X I,J,K on a small tensor

GR1,R2,R3 .
• Supposition : the compressed tensor G contains almost the

same information as the original tensor X .
2. Compute the CP decomposition of G.

• Consider non-negativity constraints of X in the optimization
problem.
• Estimate the compressed factors AR1×R

c , BR2×R
c and CR3×R

c .

3. Uncompress the estimated one-rank factors Ac, Bc and Cc

to obtain the original factors AI×R, BJ×R and CK×R.

[1] Cohen, J., Cabral-Farias, R., Comon, P. ; "Fast Decomposition of Large Nonnegative Tensors," IEEE Signal
Processing Letters, 22(7), pp. 862-866, 2015.
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Dataset

> 44 daily MODIS acquisitions with low cloud coverage.
> Pre-processed to increase spatial resolution (250m).
> Dimensions : 4800× 7× 44.

[2] Veganzones, M.A. ; Cohen, J. ; Cabral-Farias, R. ; Chanussot, J. ; Comon, P. ; "Nonnegative tensor CP decomposition
of hyperspectral data," IEEE Transactions on Geoscience and Remote Sensing, 54(5), pp. 2577-2588, 2016.
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Experimental methodology (I)

> Competing algorithms :
• Compression-based CP algorithms : CCG and ProCoALS.
• Conventional CP algorithm : ANLS.
• Conventional day-basis full-constrained spectral unmixing

(FCLSU).
> Groundtruth : 8 spectra (on-field acquisitions).
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Experimental methodology (II)

> We run 50 Monte Carlo runs for each of the algorithms for a
set of different rank values in the range R ∈ [5, 15].

> For the compression-based CP algorithms, the compressed
tensor, X c, has dimensions 175× 7× 25.

> Quality measures :
• Reconstruction error : average RMSE.
• Angular error w.r.t. the groundtruth spectral signatures.
• Linear Pearson correlation w.r.t. the spatial abundances

obtained by the FCLSU.
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Reconstruction errors
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(a) ANLS
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Spectral factors interpretation
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Spatial factors interpretation
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Spatial factors interpretation

> Best run with rank R = 8.

Permanent snow/ice

Seasonal snow/ice (type 1) Seasonal snow/ice (type 2)

Seasonal vegetation (type 1) Seasonal vegetation (type 2)
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Are hyperspectral data cubes tensors ?

> Hyperspectral images are often provided, not as
non-negative matrices, X ∈ RI×J

+ , but as data cubes,
X ∈ RIr×Ic×J

+ , where Ir and Ic denote the number of rows
and columns respectively, being I = IrIc.

> It is possible to think of the data cube as a tensor
representation of the image, allowing to apply tensor
analysis techniques.

> This is fine !→ Employed for de-noising, compression, ...
> ... but, in general, it is not possible to suppose a low rank,

that is, a small R.
> Proposed solution : patch-tensors [3].

[3] Veganzones, M.A. ; Cohen, J. ; Cabral-Farias, R. ; Usevich, K., Drumetz, L. ; Chanussot, J. ; Comon, P. ; "Canonical
Polyadic decomposition of hyperspectral patch-tensors," 2016 EUSIPCO Conference (submitted).
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