Multibloc analysis of multimodal and multiresolution hyperspectral images Application to plant cell wall analysis

M-F Devaux F Guillon

Parois Végétales & Polysaccharides Pariétaux

Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering

M Hanafi

Sensométrie & Chimiométrie SUNCHROTRON

F Jamme

Dichroisme, Imagerie, Spectrométrie de masse pour la Chimie et la Biologie

PhD Fatma Allouche: 2009-2012

4^{ème} colloque du Groupe Hyperspectral de la Société Française de Photogrammétrie et de Télédétection

11-13 mai 2016

Plant cell wall

Carbohydrates

Lignins

Lipids

Proteins

Maize stem

Constituents are organised....

Chemical composition

are complex polymers

Major constituents

In the plant

Autofluorescence: false color, Blue and UV fluorescence

In the wall

In situ chemical analysis : Microspectroscopy hyperspectral images

Bidlack et al., 1992

Multi and Hyperspectral Image Analysis A chemometric Approach

Set of pixels acquired in different spatial locations

Multimodal spectral images : Multiblock Data Analysis

Coupling different hyperspectral images

Joint analysis of different blocks of data

Parafac, Tucker, Multiple Co-inertia Analysis N-way Partial Least Square, Multiset Multivariate Curve resolution,

Multiblock analysis: multiple co-inertia analysis

Blocks of hyperspectral images with different spatial resolution

Low resolution pixels correspond to small images of size p × p high resolution pixels.

Blocks of hyperspectral images with different spatial resolution paired data structure

How can we envision multiblock data analysis while preserving the full resolution of data tables

Extension of Multiple Co-inertia Analysis....

Extension of Multiple Co-inertia Analysis Developing Trilinear Multiple Co-inertia Analysis

Trilinear Multiple Co-inertia Analysis

Assessing global and block components

Trilinear Multiple Co-inertia Analysis

Trilinear Multiple Co-inertia Analysis: results

Global and block component

Spatial interpretation

Spatial interpretation

Comparing cell types in maize stem

Registrated images

Images of the spectral area between:

Trilinear Multiple Co-inertia Analysis: maize stem loadings

Trilinear Multiple Co-inertia Analysis: maize stem Global and Block components

Component 2 : lignin / polysaccharides + phenolic acid

Segmented image: $c_g < -0.1 \rightarrow lignin$

sclerenchyma

sclerenchyma

Trilinear Multiple Co-inertia Analysis: maize stem Global and Block components

Component 2 : lignin / polysaccharides + phenolic acid

Segmented image: $-0.1 < c_g < 0 \rightarrow \text{lignin} + \text{phenolic acids}$

sclerenchyma

xylem

sclerenchyma

Trilinear Multiple Co-inertia Analysis: maize stem Global and Block components

Component 2 : lignin / polysaccharides + phenolic acid

Conclusion

Designing data blocks that preserve spatial resolution

Extension of Multiple Co-inertia Analysis to data tables with an heterogeneous number of way.

Application to hyperspectral images

Loadings for spectral interpretation Component images for spatial analysis: Maize stem: comparing cell types.

Complementarity and common information

Global and Block component

Perspectives

Hyperspectral images: what about the third way?
Spatial interpretation of the α weight vectors

➢ With more than 2 spatial resolution

 Generic approach: multiscale context.
anytime a vector can be paired to a set of vector

Multiblock analysis: multiple co-inertia analysis

Chessel, Hanafi, 1993

Trilinear Multiple Co-inertia Analysis: deflation

Next components, loadings and weight vectors are assessed after deflation

Deflation is performed to provide orthogonal loadings per block

$$X_{k}^{(h+1)} = X_{k}^{(h)} - c_{X_{k}}^{(h)} u_{k}^{(h)}$$

 $X\downarrow k$

Deflation is performed on each stack of the three-way block

$$Y_{j(z)}^{(h+1)} = Y_{j(z)}^{(h)} \text{-} C_{Y_{j(z)}}^{(h)} V_{j}^{(h)'}$$

Coupling multimodal hyperspectral images Multidisciplinary steps...

Demonstration of the whole chain of analysis: PhD thesis F Allouche 2009-2012

Définir une image de référence Recaler, Fusionner ?

Définir une image de référence...

Dataset 1

Reference image (confocal-brightfield)

Trilinear Multiple Co-inertia Analysis: algorithm

Initialisation :

- Start with random α weight vector with $||\alpha||=1$

Iteration :

- Apply Multiple Co-inertia Analysis to weighted sum data tables
- Set α weight vector: similarity between global and block component
- Normalise weight vector: $||\alpha||=1$

Convergence :

- Stop when loadings and scores do not change between two iterations.

Analyse Trilinéaire en Co-inertie Multiple

Data structure Multiresolution hyperspectral images / Multiresolution data tables

Unfolding small images leads to multiresolution data tables => multiway data tables with heterogeneous numbers of way

Plant cell wall

Chemical composition

Major constituents are complex polymers Carbohydrates Lignins Proteins Lipids

Constituents are organised.... Ex: In cell walls

<u>5000 μm</u>

Autofluorescence: false color, Blue and UV fluorescence

RETICULATIO CELLULOSE

Maize stem

In the plant

Bidlack et al., 1992

Microspectroscopy and hyperspectral imaging

in situ chemical analysis

Spectrophotometer + Microscope

pixels

pixels

Scanning a region lead to one hyperspectral image

Sample region

One complete spectrum is acquired for each pixel