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Introduction

@ Blind source separation (BSS)
= advanced configurations: nonlinear mixing models
= major class: linear-quadratic (LQ), including bilinear

@ Bilinear / LQ mixtures:
theoretical interest + applications:
@ e unmixing of remote sensing data
e processing of scanned images (show-through effect)
e analysis of gas sensor array data
@ generic model: truncated polynomial series
= approximation of (unknown) model

@ Topics of this talk: (1) BMF Methods:
Bilinear BSS methods based on Matrix Factorization
+ extension to nonnegativity constraints
(2) unsupervised unmixing of urban hyperspectral images
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Mixing model

Bilinear mixing model: one sample

@ Scalar form:

M M-1 M
xi(n) = Y aysi(n)+ Y > busi(n)s(n) (1)
j=1 j=1 k=j+1
@ Application to remote sensing [Meganem 2014a]:
aj = abundance, s;j(n) = reflectance spectrum p;(}\),

single reflection: linear,  double reflection: quadratic
SEnsor
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Mixing model

Bilinear mixing model: one sample

@ Scalar form:
M M—1 M
xi(n) = > agsi(n)+ Y > busi(ns(n)  (2)
Jj=1 Jj=1 k=j+1
@ First matrix form:
x(n) = As(n) + Bp(n) (3)

with column vector p(n): all source products s;(n)sk(n)
@ Second matrix form:

x(n) = A3(n) (4)

with “extended sources” and “extended mixing matrix":

3(n) = { ;((’,’1)) ] and A =[A B] (5)



Mixing model

Bilinear mixing model: all samples

@ Multi-sample matrix-form mixing model:
x(n) = A3(n) = X =AS (6)

with
(7)



BMF methods

© BMF methods



BMF methods

BMF methods using a source-constrained structure

Goal of BSS:
provide estimates of source signals,
by using adequately tuned parameters

= methods:

@ A standard approach:
combine observations according to model which
implements class of functions = inverse of class of
functions corresponding to mixing model
+ select parameter values

@ Other approach here:
separating system which models direct function,
i.e. mixing function:
needed for nonlinear mixture



BMF methods

using a source-constrained structure (cont'd)

Mixing and separating data structures:

@ Mixing function: .
X = AS (9)

= variables of separating structure: matrices C and
D, which respectively estimate A and S
(possibly up to indeterminacies)

@ Rows of S and D: vectors used to decompose rows of X
@ A and C contain coefficients of this decomposition
@ Constraint on S and therefore D:

o top M rows of D: master, i.e. freely tuned, variables,
denoted as di to dy

o subsequent rows of D: slave variables,
updated together with above top rows,

so as to contain element-wise products d; ® dj
10



BMF methods

using a source-constrained structure (cont'd)

@ Separation principle:

update C and D so that CD fits X,

in order to ideally achieve CD = X

= class of methods and separation principle = BMF
@ = several adaptation criteria for C and D, e.g:

© minimize cost function
J =X - Dl (10)

© modified approach: see below

@ Same as our previous approach for LQ mixtures
[Meganem 2014b],
but here no nonnegativity constraints on sources and
mixing coefficients !

(nor “sum-to-one constraint”, thanks to bilinear mixing)
11



BMF methods

BMF Methods using a doubly-constrained structure

@ Matrix C:
o In above method: master variable
o In following method [Deville 2015]: slave variable
= only master variable: top M rows of D
@ New adaptation scheme:
in each occurence of adaptation loop for D,
slave variable C is set to its optimum value,
i.e. to its value which minimizes || X — CD||f wrt C for
considered value of D
= least squares solution:

Copt = XDT(DDT)™! (11)
= cost function:
J, = [|X(I = DT(DDT) ' D)||F (12)
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BMF methods

using a doubly-constrained structure (cont'd)

@ Attractive features:
o searched space has a much lower dimension
= computational time, convergence properties
o J, defined by closed-form expression
= gradient-based optimization algorithms

@ = various separation algorithms:
o Derivative-free: Nelder-Mead method,
as implemented in fminsearch() Matlab function
[Deville 2015]
o Gradient-based method = our calculations
+ nonnegativity constraint
[Benhalouche 2016]
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@ Tests
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Test results

@ Pure spectra: 8 urban spectra

o Coefficients:

o linear: average classification results over windows
o quadratic: Fan's model

@ Unmixing methods:

o this talk: optimize J,: 2 versions: (1) gradient, (2)
Nelder-Mead, both with nonnegativity constraint
o linear NMF and extended NMF

@ our previous LQ methods: multiplicative, gradient,

gradient-Newton

SAM (°) | NMSE (%) | SID

Grd-NS-LS-BMF 2.60 15.38 1.56

Nelder-Mead 2.60 15.38 1.56
NMF 99.51 168.04 683.88
Lin-Ext-NMF 16.57 36.87 25.93

Mult-LQNMF 7.85 26.87 4.18
Grd-LQNMF 15.49 43.65 10.85

Grd-New-LQNMF 10.63 29.89 432
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@ Separability, conditioning
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Separability, conditioning

Separability

@ New phenomenon, due to nonlinearity of mixture:
linear independence of sources and some products
= separability guaranteed for BMF without constraint
= too high indeterminacies in linear BSS
= e.g. nonnegativity constraint in linear NMF

@ Phenomenon due to separation principle of BMF:
select C and D so that CD fits X

@ For arbitrary value of top M rows of D:
row vectors of matrix product CD: combinations of:

o the M vectors di to dy
o their products d; © dj

17



Separability, conditioning

Separability and conditioning

@ When each d; is not collinear to one of the actual source
vectors,
but is a (bi)linear combination of the latter vectors:
following property hoped:
vector products d; ® di have “complex form” and are thus
outside subspace spanned by actual source vectors and
their products,
i.e. outside subspace spanned by rows of X
= CD cannot exactly fit X, wathever the value of C

@ Conversely, exact fit CD = X hoped to be achieved
only when D extracts the source signals
(up to scaling and permutation)

@ Formal proof for 2 sources: see [Deville 2015]

@ Otbher issue: conditioning

18



e Tests
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Data

Toy example, related to remote sensing:

@ source vectors s; and s,:
reflectance spectra,
derived from USGS hyperspectral database:
each source sample is here obtained as average of 200
adjacent samples of an original USGS spectrum
= source vectors thus reduced to 10 samples

@ 10 synthetic but realistic bilinear mixtures,
random, uniform, coefficients: a;; € [0,1], bjx € [0,0.2],
ajj rescaled to sum to one

@ 100 Monte-Carlo tests
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BSS method, performance criteria
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Method: BMF principle, least squares C,p;, Nelder-Mead
no nonnegativity constraint
Initialization of d; and d,:
s and s, + random noise, uniform over [—0.05, 0.05]
Normalized root-mean-square error for sources:
AL
IEIIS
src — 5 (13)
[Is11? + [[s2][?

with Fj; equal to:

m|n (||51+61|| ||d||2> + m|n (||52+ 2” 2||dJ||2>
=2 ||| |Idj|
Normalized reconstruction error:

E — ||X_C0PtD||F
1241

(14)




Tests

Scatter plot in (Esrc, Erecons) plane, before BMF

©
—

©

o

[«2)
T
%

©

o

=
X

initial reconstruction error
o
o
[e¢]

0'002.08 0.1 0.12 0.14 0.16

initial error for sources

29



Tests

Scatter plot in (Esre, Erecons) plane, after BMF
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@ As expected, J, strongly decreased
= good fit of CD wrt X
@ But conditioning issue: source estimates:
may be significantly different from actual source vectors
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Conclusion

Conclusion

@ Proposed BMF class of BSS methods is attractive:

© it initially does not require statistical independence,
nonnegativity or sparsity of source signals,
but only linear independence of sources and some
element-wise source products

© it does not require knowing analytical form of inverse of
mixing model,
but only of direct model, i.e. mixing model

© its separation principle was shown to ensure theoretical
separability (for 2 sources at this stage)

@ Some corresponding practical cost functions and
algorithms may lead to numerical conditioning issues
= avoided with constraints, e.g. nonnegativity

@ Various extensions: work in progress
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