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Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionIntrodutionBlind soure separation (BSS)
⇒ advaned on�gurations: nonlinear mixing models
⇒ major lass: linear-quadrati (LQ), inluding bilinearBilinear / LQ mixtures:theoretial interest + appliations:

• unmixing of remote sensing data
• proessing of sanned images (show-through e�et)
• analysis of gas sensor array datageneri model: trunated polynomial series
⇒ approximation of (unknown) modelTopis of this talk: (1) BMF Methods:Bilinear BSS methods based on Matrix Fatorization+ extension to nonnegativity onstraints(2) unsupervised unmixing of urban hyperspetral images3
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Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionBilinear mixing model: one sampleSalar form:xi(n) =

M
∑j=1 aijsj(n) +

M−1
∑j=1 M

∑k=j+1 bijksj(n)sk(n) (1)Appliation to remote sensing [Meganem 2014a℄:aij = abundane, sj(n) = re�etane spetrum ρj(λ),single re�etion: linear, double re�etion: quadrati
sensor
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Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionBilinear mixing model: one sampleSalar form:xi(n) =
M

∑j=1 aijsj(n) +
M−1
∑j=1 M

∑k=j+1 bijksj(n)sk(n) (2)First matrix form:x(n) = As(n) + Bp(n) (3)with olumn vetor p(n): all soure produts sj(n)sk(n)Seond matrix form:x(n) = Ãs̃(n) (4)with �extended soures� and �extended mixing matrix�:s̃(n) =

[ s(n)p(n) ] and Ã = [A B] (5)6



Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionBilinear mixing model: all samples
Multi-sample matrix-form mixing model:x(n) = Ãs̃(n) ⇒ X = ÃS̃ (6)with S̃ = [s̃(1), . . . , s̃(N)] (7)X = [x(1), . . . , x(N)] (8)
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Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionBMF methods using a soure-onstrained strutureGoal of BSS:provide estimates of soure signals,by using adequately tuned parameters
⇒ methods:A standard approah:ombine observations aording to model whihimplements lass of funtions = inverse of lass offuntions orresponding to mixing model+ selet parameter valuesOther approah here:separating system whih models diret funtion,i.e. mixing funtion:needed for nonlinear mixture9



Introdution Mixing model BMF methods Tests Separability, onditioning Tests Conlusion... using a soure-onstrained struture (ont'd)Mixing and separating data strutures:Mixing funtion: X = ÃS̃ (9)
⇒ variables of separating struture: matries C andD, whih respetively estimate Ã and S̃(possibly up to indeterminaies)Rows of S̃ and D: vetors used to deompose rows of XÃ and C ontain oe�ients of this deompositionConstraint on S̃ and therefore D:top M rows of D: master, i.e. freely tuned, variables,denoted as d1 to dMsubsequent rows of D: slave variables,updated together with above top rows,so as to ontain element-wise produts dj ⊙ dk10



Introdution Mixing model BMF methods Tests Separability, onditioning Tests Conlusion... using a soure-onstrained struture (ont'd)Separation priniple:update C and D so that CD �ts X ,in order to ideally ahieve CD = X
⇒ lass of methods and separation priniple = BMF
⇒ several adaptation riteria for C and D, e.g:1 minimize ost funtionJ1 = ||X − CD||F (10)2 modi�ed approah: see belowSame as our previous approah for LQ mixtures[Meganem 2014b℄,but here no nonnegativity onstraints on soures andmixing oe�ients !(nor �sum-to-one onstraint�, thanks to bilinear mixing)11



Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionBMF Methods using a doubly-onstrained strutureMatrix C :In above method: master variableIn following method [Deville 2015℄: slave variable
⇒ only master variable: top M rows of DNew adaptation sheme:in eah ourene of adaptation loop for D,slave variable C is set to its optimum value,i.e. to its value whih minimizes ||X − CD||F wrt C foronsidered value of D

⇒ least squares solution:Copt = XDT (DDT )−1 (11)
⇒ ost funtion:J2 = ||X (I − DT (DDT )−1D)||F (12)12



Introdution Mixing model BMF methods Tests Separability, onditioning Tests Conlusion... using a doubly-onstrained struture (ont'd)Attrative features:searhed spae has a muh lower dimension
⇒ omputational time, onvergene propertiesJ2 de�ned by losed-form expression
⇒ gradient-based optimization algorithms

⇒ various separation algorithms:Derivative-free: Nelder-Mead method,as implemented in fminsearh() Matlab funtion[Deville 2015℄Gradient-based method ⇒ our alulations+ nonnegativity onstraint[Benhalouhe 2016℄13
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Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionTest resultsPure spetra: 8 urban spetraCoe�ients:linear: average lassi�ation results over windowsquadrati: Fan's modelUnmixing methods:this talk: optimize J2: 2 versions: (1) gradient, (2)Nelder-Mead, both with nonnegativity onstraintlinear NMF and extended NMFour previous LQ methods: multipliative, gradient,gradient-Newton
15



Introdution Mixing model BMF methods Tests Separability, onditioning Tests Conlusion1 Introdution2 Mixing model3 BMF methods4 Tests5 Separability, onditioning6 Tests7 Conlusion16



Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionSeparabilityNew phenomenon, due to nonlinearity of mixture:linear independene of soures and some produts
⇒ separability guaranteed for BMF without onstraint
6= too high indeterminaies in linear BSS
⇒ e.g. nonnegativity onstraint in linear NMFPhenomenon due to separation priniple of BMF:selet C and D so that CD �ts XFor arbitrary value of top M rows of D:row vetors of matrix produt CD: ombinations of:the M vetors d1 to dMtheir produts dj ⊙ dk17



Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionSeparability and onditioningWhen eah dj is not ollinear to one of the atual sourevetors,but is a (bi)linear ombination of the latter vetors:following property hoped:vetor produts dj ⊙ dk have �omplex form� and are thusoutside subspae spanned by atual soure vetors andtheir produts,i.e. outside subspae spanned by rows of X
⇒ CD annot exatly �t X , wathever the value of CConversely, exat �t CD = X hoped to be ahievedonly when D extrats the soure signals(up to saling and permutation)Formal proof for 2 soures: see [Deville 2015℄Other issue: onditioning18
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Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionDataToy example, related to remote sensing:soure vetors s1 and s2:re�etane spetra,derived from USGS hyperspetral database:eah soure sample is here obtained as average of 200adjaent samples of an original USGS spetrum
⇒ soure vetors thus redued to 10 samples10 syntheti but realisti bilinear mixtures,random, uniform, oe�ients: aij ∈ [0, 1], bijk ∈ [0, 0.2],aij resaled to sum to one100 Monte-Carlo tests20



Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionBSS method, performane riteriaMethod: BMF priniple, least squares Copt , Nelder-Meadno nonnegativity onstraintInitialization of d1 and d2:s1 and s2 + random noise, uniform over [−0.05, 0.05]Normalized root-mean-square error for soures:Esr =

√ mini 6=j∈{1,2} (Fij)
√

||s1||2 + ||s2||2 (13)with Fij equal to:min
ǫ1=±1(

||s1 + ǫ1 ||s1||
||di ||di ||2) + min

ǫ2=±1 (

||s2 + ǫ2 ||s2||
||dj ||dj ||2)Normalized reonstrution error:Ereons =

||X − CoptD||F
||X ||F (14)21



Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionSatter plot in (Esr ,Ereons) plane, before BMF
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Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionSatter plot in (Esr ,Ereons) plane, after BMF
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As expeted, J2 strongly dereased
⇒ good �t of CD wrt XBut onditioning issue: soure estimates:may be signi�antly di�erent from atual soure vetors23
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Introdution Mixing model BMF methods Tests Separability, onditioning Tests ConlusionConlusionProposed BMF lass of BSS methods is attrative:1 it initially does not require statistial independene,nonnegativity or sparsity of soure signals,but only linear independene of soures and someelement-wise soure produts2 it does not require knowing analytial form of inverse ofmixing model,but only of diret model, i.e. mixing model3 its separation priniple was shown to ensure theoretialseparability (for 2 soures at this stage)Some orresponding pratial ost funtions andalgorithms may lead to numerial onditioning issues
⇒ avoided with onstraints, e.g. nonnegativityVarious extensions: work in progress25
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... questions ?
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