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Blind Source Separation

A generic signal processing problem

Figure : Blind source separation problem (L sources and M observations (M ≥ L)).

Different mixing operators: linear instantaneous, anechoic, convolutive, non-linear

Different signals:
1D (audio, communication, spectroscopy...)
2D (images)
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Linear Blind Source Separation

Instantaneous linear mixing: x(m, n) =
∑L

`=1 a(m, `)× s(`, n)

3 classes of methods to solve the linear problem:
Independent Component Analysis (ICA)
Non-Negative Matrix Factorization (NMF)
Sparse Component Analysis (SCA)

Subclass of methods: NMF + SCA → geometric methods
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Linear Blind Source Separation

Single-source observations:

Sparsity assumption: for each source, there exist at least one sample index n of
observations for which these source is non-zero.
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Linear Blind Source Separation

Sum-to-one constraint:
In many geometric methods (hyperspectral image unmixing in Earth observation):

L∑
`=1

a(m, `) = 1 ∀m ∈ {1, . . . ,M} (1)

Assumptions:
X ,A and S are non-negative
A is a full column rank matrix
The number of sources L is known
Sparsity assumption of sources (presence of single source observations)
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Linear Blind Source Separation

Sum-to-one constraint:
for our applications:

((((((((((((((L∑
`=1

a(m, `) = 1 ∀m ∈ {1, . . . ,M} (1)

Assumptions:
X ,A and S are non-negative
A is a full column rank matrix
The number of sources L is known
Sparsity assumption of sources (presence of single source observations)
The sum of mixing coefficients is unconstrained
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Geometrical framework

Each observed vector xm is represented as an element of a RN vector space.

xm = Asm (2)

A and S being non-negative and the column a` being linearly independent:

The set:
CA = {xm | xm = Asm, sm ∈ RL

+} (3)

is a simplicial cone (the convex hull spanned by the non negative linear combination
of the columns of A).

Each column vector a` of A spans an edge E` of the simplicial cone CA:

E` = {c | c = αa`, α ∈ R+} (4)
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Geometrical framework

2-dimension example:

Figure : Scatter plot of mixed data and edges of the simplicial cone.

If the sparsity assumption of sources is valid:

CA = CX (5)

Identifying the column of A → finding the columns of X which are furthest apart in
the angular sense.
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Maximum Angle Source Separation (MASS)

Estimation of mixing matrix A: L-1 steps
Columns of X are normalize to unit length.
Illustration of the algorithm in 3-dimension with a mixture of 3 sources:

Figure : Scatter plot of the observed data.
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Maximum Angle Source Separation (MASS)

1 Identify the first 2 columns of Â by selecting the two columns of X that have the
largest angle:

(m1,m2) = argmax
i,j

cos−1(xT
i xj) ∀i , j ∈ {1, . . . ,M}. (6)

(m1,m2) = argmin
i,j

xT
i xj ∀i , j ∈ {1, . . . ,M}. (7)

Ã = [xm1 , xm2 ] (8)
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Maximum Angle Source Separation (MASS)

2 Identify the column which has the largest angle with xm1 and xm2 :
maximum angle between the column and its orthogonal projection on the simplicial
cone spanned by the columns of Ã:

ΠÃ(X ) = Ã(ÃT Ã)−1ÃTX . (9)

m3 = argmin
i

xT
i πi ∀i ∈ {1, . . . ,M} (10)

Ã = [xm1 , xm2 , xm3 ] (11)
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Maximum Angle Source Separation (MASS)

3 This projection and identification procedure is then repeated to identify the L
columns of the mixing matrix.

Â = [xm1 , . . . , xmL ] (12)

Source matrix reconstruction:
X , A and S are non-negative → Non-Negative Least Square algorithm (NNLS):

J(ŝm) =
1

2
‖xm − Âŝm‖2

2 s.t. ŝm ≥ 0, ∀m ∈ {1, . . . ,M} (13)
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Hyperspectral unmixing in astrophysics

Application field of MASS (non-negativity, correlated sources without sum-to-one
constraint )is very common in astrophysics.

Area observed at high spectral resolution → each pixel corresponds to an emission
spectrum of a portion of the area.

Figure : NGC7023

Problem: The observed spectra are generally constituted by a mixture of elementary
spectra (components of the gas cloud containing different chemical species).
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Experimental results

(a) Source 1 (b) Source 2 (c) Source 3 (d) Source 4

Figure : Extracted spectra in NGC7023-NW: NMF → blue spectra, MASS → red spectra.

Similar results for the extracted spectra

Very fast algorithm compared to the NMF

Uniqueness of the solution

MASS is able to identify a weak signal present in only some observation
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