Déconvolution distribuée pour les très grandes images hyperspectrales en interférométrie radio

Céline Meillier, Pascal Bianchi, Walid Hachem

12 mai 2016

$4^{\rm \grave{e}me}$ colloque du Groupe Hyperspectral de la SFPT

Travaux financés par l'ANR Magellan (ANR-14-CE23-0004-01)

LTCI – CNRS – Telecom Paristech Université Paris Saclay

Introduction	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion
0	00000	000	000	

Contexte : grands interféromètres pour la radio astronomie

Nouvelle génération d'interféromètres : *software telescopes.*

LOFAR :

- $\rightarrow\,$ Gamme de fréquence : 10MHz à 240 MHz.
- \rightarrow 48 stations en Europe.
- \rightarrow 25 000 antennes.

Square Kilometer Array :

- \rightarrow Gamme de fréquence : 10 MHz à 10/20 GHz.
- $\rightarrow\,$ Stations d'antennes : Australie et Afrique du Sud.
- \rightarrow Stations basses fréquences :
 - 130 000 antennes,
 - 157 To/s.

Introduction	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion
00	00000	000	000	

Déconvolution en grande dimension

Problématique de déconvolution :

- \rightarrow Grand réseau d'antennes : PSF complexe.
- → PSF connue (liées à la géométrie du réseau).
- → Problème inverse à résoudre.

Problématique "grandes dimensions" :

- \rightarrow Dimension des données (1 cube hyperspectral SKA \simeq 80 To).
- \rightarrow Données stockées sur un cluster dédié.
- \rightarrow Proposer une architecture distribuée pour la résolution du problème inverse.

DI I I	(
00	00000	000	000	0
	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion

Introduction

Modélisation et architecture distribuée

Algorithmes distribués

Résultats sur données quasi-réelles

	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion
00	00000	000	000	
	· ·			

Introduction

Modélisation et architecture distribuée

Algorithmes distribués

Résultats sur données quasi-réelles

Notations et modèle					
00	00000	000	000	0	
	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion	

Modèle des images radio-interférométriques :

$$y = Hx + n \in \mathbb{R}^M$$

où :

 $\rightarrow M = N \times L$ avec N le nombre de pixels dans une image et L le nombre de fréquence.

Formulation du problème					
00	0000	000	000	0	
Introduction	Modélisation et architecture distribuée	Algorithmes distribués	Résultats	Conclusion	

Problème d'optimisation sous contraintes considéré :

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{2}^{2} + \frac{\mu_{\epsilon}}{2} \|\mathbf{x}\|_{2}^{2} + \imath_{\mathbb{R}^{+}}(\mathbf{x}) + \mu_{s} \|\mathbf{W}_{s}\mathbf{x}\|_{1} + \mu_{\nu} \|\mathbf{W}_{\nu}\mathbf{x}\|_{1}$$
(1)

Contraintes de parcimonie :

- \rightarrow sur la décomposition en ondelettes des images : $\mu_s \| W_s x \|_1$,
- \rightarrow sur la décomposition en cosinus discret des spectres : $\mu_{\nu} \| \boldsymbol{W}_{\nu} \boldsymbol{x} \|_{1}$,

Contraintes de positivité :

- \rightarrow image = luminosité = énergie,
- → remarque : $\imath_{\mathbb{R}^+}(\mathbf{x})$ et $\mu_s || W_s \mathbf{x} ||_1$ peuvent avoir des comportements antagonistes dans la minimisation.

Décelution deve le nuimel				
00	00000	000	000	0
	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion

Résolution dans le primal

Reformulation du problème primal :

$$\min_{\mathbf{x}\in\mathbb{R}^{M}}f(\mathbf{x})+h(\mathbf{W}\mathbf{x}),\tag{2}$$

avec :

Résolution du problème :

- \rightarrow Algorithme primal-dual (Lagrangien augmenté)
- \rightarrow Résolution du problème dual.

Résolutio	n dans le dual		
	00000		
	Modélisation et architecture distribuée	Algorithmes distribués	Conclusion

Problème dual associé :

$$\min_{\boldsymbol{\lambda} \in \mathbb{R}^{(m_{s}+1)M}} f^{*}(-\boldsymbol{W}^{T}\boldsymbol{\lambda}) + h^{*}(\boldsymbol{\lambda}) \equiv \min_{\boldsymbol{\lambda} : \|\boldsymbol{\lambda}\|_{\infty} \leqslant 1} f^{*}(-\boldsymbol{W}^{T}\boldsymbol{\lambda}).$$
(3)

où f^* et h^* sont les transformées de Fenchel-Legendre de f et g :

$$\rightarrow f^*(\phi) = \frac{1}{2} \phi^T \Delta^{-1} \phi + \phi^T \Delta^{-1} H \mathbf{y} + \frac{1}{2} \mathbf{y}^T (H \Delta^{-1} H^T - I) \mathbf{y}, \text{ avec } \phi = W^T \lambda,$$

$$\rightarrow h^*(\lambda) = \imath_{\mathcal{B}_{\infty}}(\lambda).$$

et λ est le vecteur dual :

$$ightarrow oldsymbol{\lambda} = egin{pmatrix} \lambda_s \ - \ \lambda_
u \end{pmatrix}$$
, avec $oldsymbol{\lambda}_s \in \mathbb{R}^{m_{ extsf{s}}M}$ et $oldsymbol{\lambda}_
u \in \mathbb{R}^M$

00000		
Modélisation et architecture distribuée	Algorithmes distribués	Conclusion

Architecture distribuée

Chargement et manipulation centralisés des données impossible :

Mémoire

Puissance de calcul

Architecture distribuée						
00	00000	000	000	0		
	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion		

Chargement et manipulation centralisés des données impossible :

Mémoire

Puissance de calcul

Architecture proposée :

A secletter et source	attact the set of a			
00	00000	000	000	0
	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion

Architecture distribuée

Mémoire 🤄

Puissance de calcul

Avantage de l'architecture proposée :

- (::)
- $\label{eq:unique} \begin{array}{l} \text{Un noeud} = \text{quelques images ou} \\ \text{quelques spectres} \end{array}$
- \odot
- Limitation des échanges de données

Architecture proposée :

	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion
00	00000	000	000	
	· ·			

Introduction

Modélisation et architecture distribuée

Algorithmes distribués

Résultats sur données quasi-réelles

 () II (
	000	
Modélisation et architecture distribuée	Algorithmes distribués	Conclusion

Algorithmes étudiés

Algorithme	Domaine	Complexité		Mémo	oire
		Noeuds A	Noeuds B	Noeuds A	Noeuds B
ADMM	primal-dual	$\mathcal{O}\left(N_{+}\log N_{+} ight)$	$\mathcal{O}(L \log L)$	$N \times L : 7$ $m_s N \times L : 5$ $N_+ \times L : 2$	$N \times L$:8
Gradient projeté	dual	$\mathcal{O}\left(N_{+}\log N_{+} ight)$	$\mathcal{O}(L \log L)$	$N \times L : 6$ $m_s N \times L : 4$ $N_+ \times L : 2$	$N \times L:7$
FISTA	dual	$\mathcal{O}\left(N_{+}\log N_{+} ight)$	$\mathcal{O}(L \log L)$	N imes L : 8 $m_s N imes L : 6$ $N_+ imes L : 2$	$N \times L$:9

où $N_+ = N + PSF$: taille de l'image après convolution par la PSF.

	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion
00	00000	000	000	0

Exemple d'algorithme : Gradient projeté

Résolution du problème dual :

$$\min_{\boldsymbol{\lambda}: \|\boldsymbol{\lambda}\|_{\infty} \leqslant 1} f^{*}(-\boldsymbol{W}^{T}\boldsymbol{\lambda}) \quad \text{avec} \quad \boldsymbol{W} = \begin{pmatrix} \mu_{s} \boldsymbol{W}_{s} \\ - - - \\ \mu_{\nu} \boldsymbol{W}_{\nu} \end{pmatrix} \quad \text{et} \quad \boldsymbol{\lambda} = \begin{pmatrix} \boldsymbol{\lambda}_{s} \\ - - \\ \boldsymbol{\lambda}_{\nu} \end{pmatrix}$$

Puisque f^* est lisse on peut utiliser l'algorithme du gradient projeté :

$$\begin{split} \boldsymbol{\lambda}^{k+1} &= \mathcal{P}_{\infty} \left(\boldsymbol{\lambda}^{k} + \rho \boldsymbol{W} \nabla f^{*} (-\boldsymbol{W}^{T} \boldsymbol{\lambda}^{k}) \right) \\ &= \mathcal{P}_{\infty} \left(\boldsymbol{\lambda}^{k} - \rho \boldsymbol{W} (\boldsymbol{H}^{T} \boldsymbol{H} + \mu_{\epsilon} \boldsymbol{I})^{-1} (\boldsymbol{W}^{T} \boldsymbol{\lambda}^{k} - \boldsymbol{H} \boldsymbol{y}) \right) \end{split}$$

où $\rho > 0$ et \mathcal{P}_{∞} est le projecteur sur \mathcal{B}_{∞} .

Calcul distribué du gradient					
00	00000	000	000	0	
Introduction	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion	

Le terme de gradient $W(H^T H + \mu_{\epsilon}I)^{-1}W^T \lambda^k$ est distribuable selon les images et selon les spectres :

$$W(H^{T}H+\mu_{\epsilon}I)^{-1}W^{T}\lambda = \begin{pmatrix} \mu_{s}W_{s}(H^{T}H+\mu_{\epsilon}I)^{-1}(\mu_{s}W_{s}^{T}\lambda_{s}+\mu_{\nu}W_{\nu}^{T}\lambda_{\nu})\\ \mu_{\nu}W_{\nu}(H^{T}H+\mu_{\epsilon}I)^{-1}(\mu_{s}W_{s}^{T}\lambda_{s}+\mu_{\nu}W_{\nu}^{T}\lambda_{\nu}) \end{pmatrix} \cong \begin{pmatrix} \lambda_{s}\\ --\\ \lambda_{\nu} \end{pmatrix}$$

Stratégie de distribution :

- $\rightarrow\,$ Noeuds du groupe A = opérations parallélisables en fréquence + mise à jour et stockage de $\lambda_s.$
- $\rightarrow\,$ Noeuds du groupe B = opérations parallélisables en pixels + mise à jour et stockage de $\lambda_{\nu}.$

	6			
00	00000	000	000	
	Modélisation et architecture distribuée	Algorithmes distribués	Résultats	Conclusion

Introduction

Modélisation et architecture distribuée

Algorithmes distribués

Résultats sur données quasi-réelles

Image di	ussi róollo : galaxio m31		Image guesi réelle , gelexie m21						
00	00000	000	•00	0					
	Modélisation et architecture distribuée	Algorithmes distribués	Résultats	Conclusion					

Caractéristiques :

- \rightarrow Dimensions : 256 \times 256 \times 100 pixels.
- \rightarrow Bruit additif : $15 \leqslant RSB \leqslant 25$ dB.
- $\rightarrow\,$ PSF gaussienne de taille 21 $\times\,$ 21 pixels.

FIGURE: Gauche : gradient projeté, centre : FISTA, droite : ADMM. De haut en bas : image reconstruite sur une bande spectrale (RSB = 25dB), erreur de reconstruction (biais) sur la même bande spectrale, spectre reconstruit en un point de l'image, 200 itérations.

D (
00	00000	000	000	0
	Modélisation et architecture distribuée	Algorithmes distribués	Résultats	Conclusion

Performances

	/			
00	00000	000	000	0
	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion

Introduction

Modélisation et architecture distribuée

Algorithmes distribués

Résultats sur données quasi-réelles

Conclusion	Conclusion et perspectives						
00	00000	000	000	•			
	Modélisation et architecture distribuée	Algorithmes distribués		Conclusion			

Algorithmes étudiés :

- \rightarrow L'algorithme du gradient projeté et son accélération FISTA : bon compromis complexité-gestion mémoire-convergence.
- \rightarrow ADMM : performances (déconvolution et complexité) satisfaisantes.
- \rightarrow L-BFGS-B : se distribue très difficilement.

Perspectives :

- \rightarrow En cas de PSF longue mémoire : l'approximation par une matrice circulante pour l'inversion de la matrice de Gram $H^T H$ devient inutilisable.
- $\rightarrow\,$ Recherche d'algorithmes ne nécessitant pas d'inversion de matrice.