DE LA RECHERCHE À L'INDUSTRIE

APPORT DE L'IMAGERIE HYPERSPECTRALE POUR LA CARACTÉRISATION DES MINÉRAUX INDUSTRIELS ET MINIERS

Exemple de cube hyperspectral

M. BROSSARD (CEA/ENS), R. MARION (CEA), V. CARRÈRE (LPGN)

www.cea.fr

ÉLÉMENTS DE CONTEXTE

Caractérisation des minéraux industriels et miniers

- Surveillance environnementale
 - Pollution des sols et des eaux, etc.
- Impact des activités anthropiques
- Sécurité & Défense

Hyperspectral : caractéristiques instrumentales adaptées

Résolution spatiale (déca) métrique \rightarrow analyse locale à l'échelle des sites

Continuum spectral [0,4 – 2,5µm] à 10nm → accès aux minéraux ayant une signature spectrale caractéristique dans le VNIR/SWIR

•Oxydes et hydroxydes de fer, argiles, chlorites, carbonates, sulfates, etc.

Usines métallurgiques ArcelorMittal de Fos-sur-Mer (France)

Kaolinite (Al₂Si₂O₅(OH)₄) disposée en tas sur un site industriel

MINÉRALOGIE ET IMAGERIE HYPERSPECTRALE

Un minéral est défini par :

- Sa composition chimique
- L'agencement de ses atomes
- Ses propriétés
 - Physico-chimiques
 - Mécaniques
 - Optiques

En particulier, un minéral est caractérisé par son spectre de réflectance

Kaolinite (Al₂Si₂O₅(OH)₄)

SIGNATURE DES MINÉRAUX DANS LE DOMAINE [0,4 – 2,5µm]

Exploitation de la signature spectrale

- Position en λ des pics d'absorption \rightarrow identification du minéral
- Amplitude des absorptions \rightarrow informations quantitatives
- Forme générale → informations sur les conditions de surface (granulométrie, rugosité, humidité, etc.)

→ Comparer le spectre à une base de données en utilisant une métrique : NOK

 \rightarrow Objectif : trouver la position des pics d'absorption

MÉTHODE AGM (AUTOMATIZED GAUSSIAN MODEL*) : MODÉLISATION DU SPECTRE [1/3]

Approche MGM^{**} étendue au SWIR
Extension du modèle pour prendre en compte la forme :

Des absorptions (asymétrie, saturation)***
Globale du spectre (eau à 2,8µm)****

<u>Spectre d'alunite (en bleu) ainsi que son</u> continuum calculé (en rouge)

* (Brossard et al., 2016), ** (Sunshine et al., 1990), *** (Pompilio et al., 2009), **** (Whiting et al., 2003)

MÉTHODE AGM : ESTIMATION DES PARAMÈTRES DU MODÈLE [2/3]

- Estimation des paramètres initiaux :
 - Estimation et retrait du continuum $C(\lambda)$
 - Détermination de *N* et des gaussiennes $G_i(\lambda)$
- Boucle d'ajustement de courbe :
 - Algorithme de minimisation Levenberg-Marquardt
 - Critères de suppression de gaussiennes (« overfitting »)

⇒ Modélisation correcte avec *N* faible

DE LA RECHERCHE À L'INDUSTR

MÉTHODE AGM : IDENTIFICATION DU MINÉRAL [3/3]

- Principe : reproduire l'interprétation visuelle du spectre de réflectance qui serait faîte par un minéralogiste pour identifier le minéral (GMEX*)
- Méthode d'identification :
 - Regarder l'absorption la plus profonde identification d'un groupe minéralogique
 Regarder les autres absorptions – identification d'un minéral
- + Prise en compte :
 - Des spectres sans absorption (fausses détections)
 - Des bandes masquées (atmosphère)

Base de données :

- 4 minéraux industriels (argiles, chlorites, carbonates, sulfates + gibbsite, buddingtonite, talc)
- Caractérisation des absorptions de chaque minéral : position, largeur, profondeur

Flowchart de l'algorithme d'identification

Kaolinite (Al₂Si₂O₅(OH)₄) disposée en tas sur un site industriel

"GMEX: Guides for Mineral Exploration: Spectral Interpretation Field Manual." 2008. AusSpec.

Constitution d'une base de données

14 minéraux (argiles, chlorites, carbonates, sulfates + gibbsite, buddingtonite, talc)
Caractérisation des absorptions de chaque minéral :

- Position
- Largeur
- profondeur

Tests sur données simulées

60 spectres des 14 minéraux de la base de données
59 spectres correctement identifiés
Non réponse pour un spectre de montmorillonite

à la granulométrie particulière

Minéral	Numéro	Position	Écart-type	Position GMEX
	d'absorption	moyenne (nm)	(nm)	(nm)
Kaolinite	1	2206	1	~ 2206
	2	2167	3	~ 2162
Illite	1	2213	8	2180 - 2228
	2	2357	14	~ 2347
Montmorillonite	1	2210	6	2205 - 2212
	-			-
Nontronite	1	2280	-	2270 - 2296
	2	2357	-	2363 - 2394
Fe chlorite	1	2258	2	2355 - 2365
	2	2258	2	2261
Mg chlorite	1	2322	3	2325
	2	2247	2	~ 2245
Calcite	1	2338	2	2340 - 2345
		-	-	-
Dolomite	1	2320	-	2320 - 2328
	-	-	-	-
Alunite	1	2171	4	2160 - 2170
	2	1763	2	~ 1760
Gypse	1	1434	-	~ 1449
	2	1750	-	~ 1750
Jarosite	1	2271	3	2262 - 2277
	2	1474	5	1468 - 1477
Gibbsite	1	2270	-	~ 2268
	2	1452	-	~ 1452
Buddingtonite	1	2124	-	2112
				-
Talc	1	2310	2	~ 2310
	2	2386	1	~ 2390

Application à la reconnaissance de minéraux industriels (carrières, usines) et miniers et à la cartographie minéralogique

DE LA RECHERCHE À L'INDUSTRIE

CHEMICAL LIME CO : PRODUCTION DE CHAUX DOLOMITIQUE

Images Google Earth et AVIRIS (rés. : 16m) (rouge : zone des fours, vert : tas d'approvisionnement, bleu : carrière)

Image Google Earth des tas de dolomie (roche carbonatée) en entrée des fours

Méthode AGM

<u>Résultats : dolomite en vert, calcite en</u> <u>bleu, autres minéraux en rouge</u>

Distinction dolomite/calcite - Spectres théoriques (librairie spectrale) de dolomite (bleu) et calcite (vert) et spectre <u>AVIRIS de dolomite (rouge)</u>

⇒ impact de la granulométrie (tas) ou présence de calcite ? Cea

PACIFIC CLAY & PACIFIC AGGREGATES : PRODUCTION DE BRIQUES D'ARGILE ET DE GRANULATS

Image AVIRIS (rés. 16m)

<u>Résultats : kaolinite en vert, illite en bleu,</u> <u>montmorillonite en jaune, autres</u> <u>minéraux en rouge</u>

- Données USGS :
 - Kaolinite et autres argiles
 - Sables et graviers de construction
- Résultats :
 - Détection des argiles kaolinite, illite, et montmorillonite
 - Pas de fausse détection pour les sables et les graviers

MINE D'EXTRACTION DE TERRES RARES DE MOUNTAIN PASS

Caractéristiques du dépôt :

Terres rares principalement contenues dans le minéral bastnasite

- Gangue minérale : calcite, barite, dolomite (carbonates)
- Usine sur le site :

Extraction des métaux Cerium, Lanthanum, Neodymium, EuropiumDivers procédés (traitements acides, calcination...)

Image hyperspectrale AVIRIS

Spectres extraits de l'image

CONCLUSIONS ET PERSPECTIVES

Conclusions :

- Fonctionnement sur données simulées : très satisfaisant
- Fonctionnement sur données réelles : satisfaisant, en particulier avec le capteur AVIRIS
- → imite principale : mélanges spectraux
- Perspectives :
 - Couplage VNIR/SWIR pour l'identification
 - Ajustement des paramètres algorithmiques en fonction du capteur utilisé
 - Étendre la méthode aux environnements (industriels et) miniers
 - Prise en compte des mélanges spectraux
 - Aspect quantitatif / cartographie (ex. Cuprite AVIRIS, Namibie HyMap)
 - Applications satellitaires (HYPXIM)