
DE LA RECHERCHE À L'INDUSTRIE

APPORT DE L'IMAGERIE HYPERSPECTRALE POUR LA CARACTÉRISATION DES MINÉRAUX INDUSTRIELS ET MINIERS

Exemple de cube hyperspectral

M. BROSSARD (CEA/ENS), R. MARION (CEA), V. CARRÈRE (LPGN)

ÉLÉMENTS DE CONTEXTE

Caractérisation des minéraux industriels et miniers

- Surveillance environnementale
 - Pollution des sols et des eaux, etc.
- Impact des activités anthropiques
- Sécurité & Défense

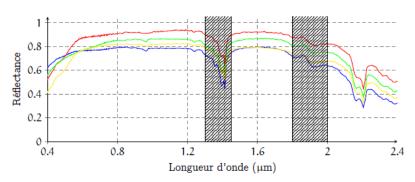
Hyperspectral : caractéristiques instrumentales adaptées

- Résolution spatiale (déca) métrique → analyse locale à l'échelle des sites
- Continuum spectral [0,4 2,5µm] à 10nm → accès aux minéraux ayant une signature spectrale caractéristique dans le VNIR/SWIR
 - Oxydes et hydroxydes de fer, argiles, chlorites, carbonates, sulfates, etc.

<u>Usines métallurgiques ArcelorMittal</u> <u>de Fos-sur-Mer (France)</u>

Kaolinite (Al₂Si₂O₅(OH)₄) disposée en tas sur un site industriel

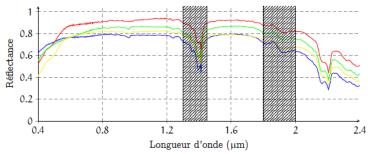
MINÉRALOGIE ET IMAGERIE HYPERSPECTRALE

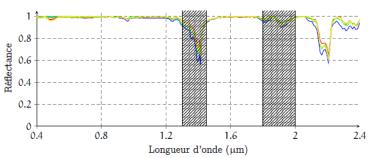

Un minéral est défini par :

- Sa composition chimique
- L'agencement de ses atomes
- Ses propriétés
 - Physico-chimiques
 - **M**écaniques
 - Optiques

En particulier, un minéral est caractérisé par son spectre de réflectance

Kaolinite (Al₂Si₂O₅(OH)₄)

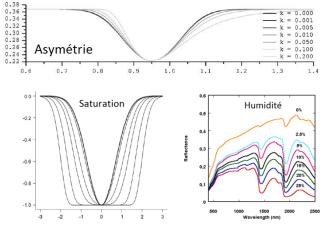

Spectres de différents échantillons de kaolinite


SIGNATURE DES MINÉRAUX DANS LE DOMAINE [0,4 – 2,5µm]

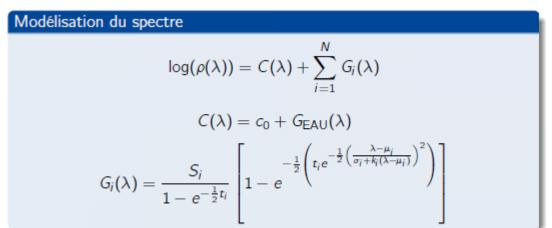
Exploitation de la signature spectrale

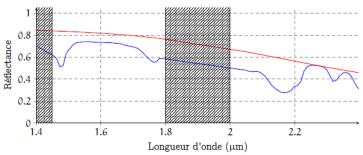
- Position en λ des pics d'absorption \rightarrow identification du minéral
- Amplitude des absorptions → informations quantitatives
- Forme générale → informations sur les conditions de surface (granulométrie, rugosité, humidité, etc.)

Spectres de différents échantillons de kaolinite


Spectres de kaolinite après retrait du continuum

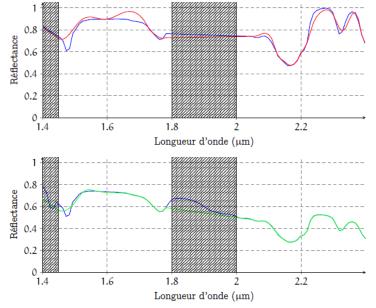
- → Comparer le spectre à une base de données en utilisant une métrique : NOK
- → Objectif: trouver la position des pics d'absorption

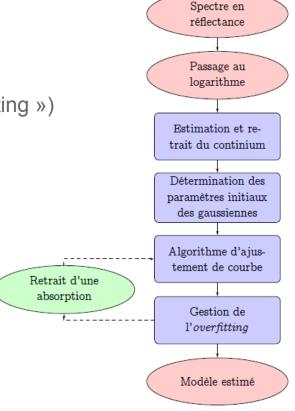



MÉTHODE AGM (AUTOMATIZED GAUSSIAN MODEL*): MODÉLISATION DU SPECTRE [1/3]

- Approche MGM** étendue au SWIR
- Extension du modèle pour prendre en compte la forme :
 - Des absorptions (asymétrie, saturation)***
 - Globale du spectre (eau à 2,8µm)****

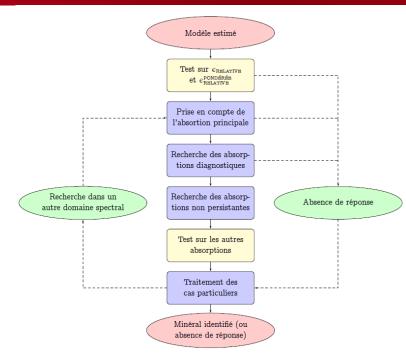
Extension du modèle MGM




Spectre d'alunite (en bleu) ainsi que son continuum calculé (en rouge)

MÉTHODE AGM : ESTIMATION DES PARAMÈTRES DU MODÈLE [2/3]

- Estimation des paramètres initiaux :
 - Estimation et retrait du continuum $C(\lambda)$
 - \blacksquare Détermination de N et des gaussiennes $G_i(\lambda)$
- Boucle d'ajustement de courbe :
 - Algorithme de minimisation Levenberg-Marquardt
 - Critères de suppression de gaussiennes (« overfitting »)
- ⇒ Modélisation correcte avec N faible


Flowchart de l'algorithme AGM

Spectres analysé (bleu), après initialisation (rouge) et calculé (vert)

MÉTHODE AGM: IDENTIFICATION DU MINÉRAL [3/3]

- <u>Principe</u>: reproduire l'interprétation visuelle du spectre de réflectance qui serait faîte par un minéralogiste pour identifier le minéral (GMEX*)
- Méthode d'identification :
 - ■Regarder l'absorption la plus profonde → identification d'un groupe minéralogique
 - Regarder les autres absorptions identification d'un minéral
- + Prise en compte :
 - Des spectres sans absorption (fausses détections)
 - →Des bandes masquées (atmosphère)
- Base de données :
 - 4 minéraux industriels (argiles, chlorites, carbonates, sulfates + gibbsite, buddingtonite, talc)
 - Caractérisation des absorptions de chaque minéral : position, largeur, profondeur

Flowchart de l'algorithme d'identification

Kaolinite (Al₂Si₂O₅(OH)₄) disposée en tas sur un site industriel

PAGE 7

VALIDATION SUR DONNÉES SIMULÉES

Constitution d'une base de données

- 14 minéraux (argiles, chlorites, carbonates, sulfates + gibbsite, buddingtonite, talc)
- Caractérisation des absorptions de chaque minéral :
 - **P**osition
 - **⊥**argeur
 - profondeur

Tests sur données simulées

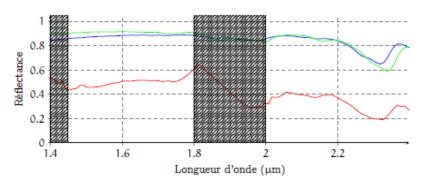
- 60 spectres des 14 minéraux de la base de données
- 59 spectres correctement identifiés
 - Non réponse pour un spectre de montmorillonite à la granulométrie particulière

Minéral	Numéro	Position	Écart-type	Position GMEX
	d'absorption	moyenne (nm)	(nm)	(nm)
Kaolinite	1	2206	1	~ 2206
	2	2167	3	~ 2162
Illite	1	2213	8	2180 - 2228
	2	2357	14	~ 2347
Montmorillonite	1	2210	6	2205 - 2212
Nontronite	1	2280	-	2270 - 2296
	2	2357		2363 - 2394
Fe chlorite	1	2258	2	2355 - 2365
	2	2258	2	2261
Mg chlorite	1	2322	3	2325
	2	2247	2	~ 2245
Calcite	1	2338	2	2340 - 2345
Dolomite	1	2320	-	2320 - 2328
Alunite	1	2171	4	2160 - 2170
	2	1763	2	~ 1760
Gypse	1	1434	-	~ 1449
	2	1750		~ 1750
Jarosite	1	2271	3	2262 - 2277
	2	1474	5	1468 - 1477
Gibbsite	1	2270	-	~ 2268
	2	1452		~ 1452
Buddingtonite	1	2124	-	2112
				<u>-</u>
Talc	1	2310	2	~ 2310
	2	2386	1	~ 2390

Application à la reconnaissance de minéraux industriels (carrières, usines) et miniers et à la cartographie minéralogique

CHEMICAL LIME CO: PRODUCTION DE CHAUX DOLOMITIQUE

Méthode AGM


Images Google Earth et AVIRIS (rés. : 16m) (rouge : zone des fours, vert : tas d'approvisionnement, bleu : carrière)

<u>Image Google Earth des tas de dolomie</u> (roche carbonatée) en entrée des fours

Résultats : dolomite en vert, calcite en bleu, autres minéraux en rouge

<u>Distinction dolomite/calcite - Spectres théoriques (librairie spectrale) de dolomite (bleu) et calcite (vert) et spectre AVIRIS de dolomite (rouge)</u>


⇒ impact de la granulométrie (tas) ou présence de calcite ?

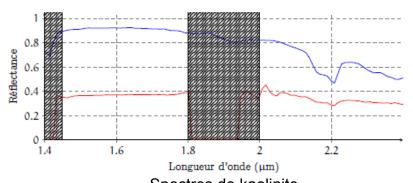
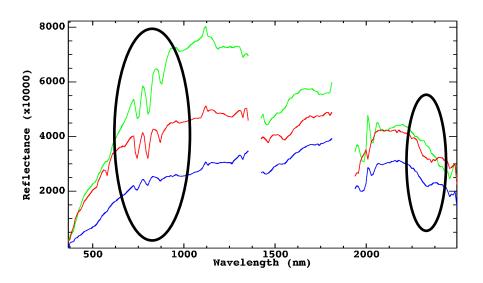

PACIFIC CLAY & PACIFIC AGGREGATES: PRODUCTION DE BRIQUES D'ARGILE ET DE GRANULATS

Image AVIRIS (rés. 16m)

Résultats : kaolinite en vert, illite en bleu, montmorillonite en jaune, autres minéraux en rouge

Spectres de kaolinite.
Bleu : librairie spectrale, rouge : AVIRIS

- Données USGS :
 - Kaolinite et autres argiles
 - Sables et graviers de construction
- Résultats :
 - Détection des argiles kaolinite, illite, et montmorillonite
 - Pas de fausse détection pour les sables et les graviers



MINE D'EXTRACTION DE TERRES RARES DE MOUNTAIN PASS

- Caractéristiques du dépôt :
 - Terres rares principalement contenues dans le minéral bastnasite
 - Gangue minérale : calcite, barite, dolomite (carbonates)
- Usine sur le site :
 - Extraction des métaux Cerium, Lanthanum, Neodymium, Europium
 - Divers procédés (traitements acides, calcination...)

Image hyperspectrale AVIRIS

Spectres extraits de l'image

CONCLUSIONS ET PERSPECTIVES

Conclusions :

- Fonctionnement sur données simulées : très satisfaisant
- Fonctionnement sur données réelles : satisfaisant, en particulier avec le capteur AVIRIS
- → imite principale : mélanges spectraux

Perspectives :

- Couplage VNIR/SWIR pour l'identification
- -Ajustement des paramètres algorithmiques en fonction du capteur utilisé
- Étendre la méthode aux environnements (industriels et) miniers
- →Prise en compte des mélanges spectraux
 - Aspect quantitatif / cartographie (ex. Cuprite AVIRIS, Namibie HyMap)
 - Applications satellitaires (HYPXIM)