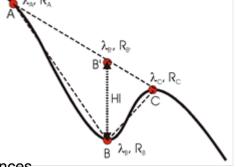




# Démélange linéaire pour la détection et la caractérisation d'hydrocarbure onshore

V. Achard\*, X. Ceamanos\*, D. Dubucq\*\*

\* ONERA, Toulouse, \*\* TOTAL, Pau


NAOMI: Partenariat Recherche et Innovation Total/ONERA)

#### **Contexte**

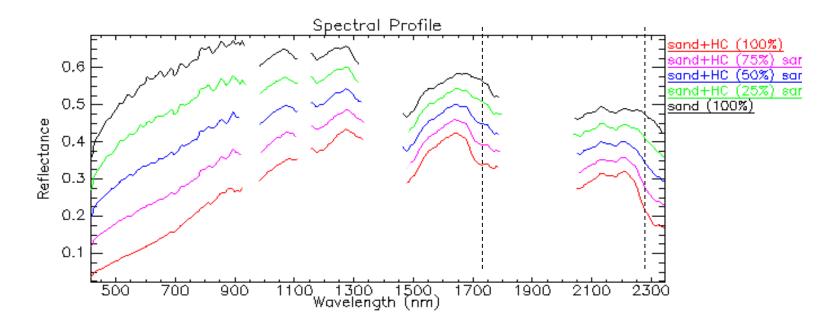
- Détection : Une méthode couramment utilisée : calcul d'indices
  - Kuhn et al.



Avec  $\lambda_A$  = 1705 nm,  $\lambda_B$  = 1729 nm et  $\lambda_C$  = 1741 nm



- Rapports de bandes : 
$$I_{1,2} = \frac{R_{A_{1,2}}}{R_{B_{1,2}}}$$
 avec  $R_{A_1}$   $R_{B_1}$  réflectances à 1658 nm et 1718 nm  $R_{A_2}$   $R_{B_2}$  réflectances à 2187 nm et 2300 nm


Caractérisation des mélanges intimes sol+HC :

Modèle PLSR étalonné à partir de mesures labo (Thèse Vincent Lever, Whispers, 2016)



## **Contexte**

Ci-dessous : spectres de mélange surfacique de **sable pur (humide)** et de **mélange intime sable+HC** (Mélange intime : sable+HC avec ~ 3%m de HC)



- Détection par HI : difficile si le mélange subpixellique
- Caractérisation des mélanges intimes par méthodes PLSR : nécessite l'extraction dans l'image des spectres de mélanges intimes
- → Apport des méthodes de démélange linéaire (surfacique) : pour la détection et en préalable à la caractérisation ?





#### Plan

- Création d'une image semi-synthétique
- Critères de sélection des méthodes de unmixing
- Résultats
- Conclusions et perspectives



# Création d'une image semi-synthétique

Création d'une image synthétique à partir de pixels d'images réelles



Instrument HySpex VNIR  $0,4 - 1 \mu m$ 

> Taille pixel: 0,5 m x 0,5 m Résolution spectr. 3,6 nm

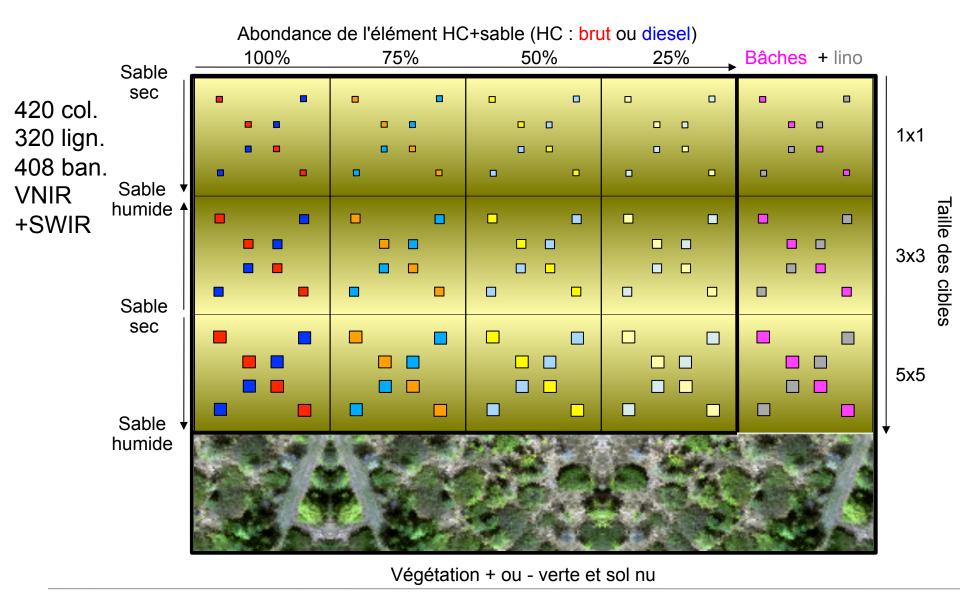
Instrument HySpex SWIR  $1 - 2.4 \mu m$ Taille pixel: 1 m x 1 m Résolution spectr. 6 nm





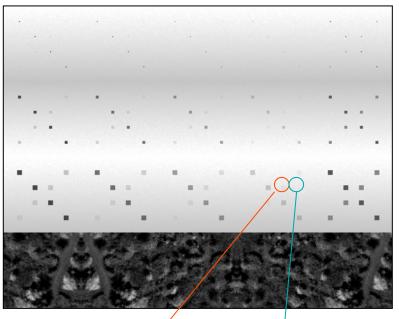




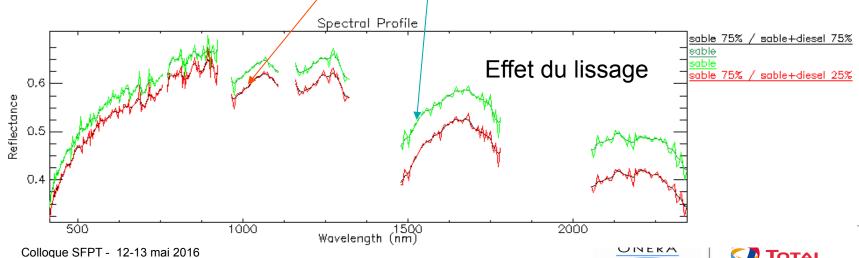







# Création d'une image semi-synthétique




# Création d'une image semi-synthétique

# Lissage spectral gaussien



Bandes 128 (876 nm)



# Critères de sélection des méthodes d'extraction de pôles de mélange

## Hypothèses:

mélange liné<u>ai</u>re

$$\vec{p}_j = \sum_{k=1,K} \vec{e}_k a_{kj}$$
 Avec  $0 \le a_{kj} \le 1$  et  $\sum_{k=1,K} a_{kj} = 1$ 

Existence de pixels purs correspondant à chaque pôle  $\vec{e}_k$ 

# Critère pour le choix de la méthode

- Robuste aux nombres de pôles de mélange
- Résultats reproductibles
- Peu sensibles à l'initialisation
- Rapide

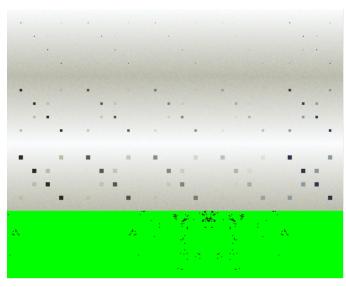
# → Méthodes géométriques

- Estimation des pôles de mélange (endmembers)
  - Méthodes testées : VCA, OSP, NFINDR
- Estimation des abondances : FCLSU

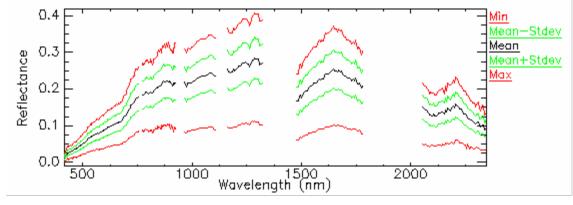


# Critères de sélection des méthodes d'extraction de pôles de mélange

#### Méthodes testées


- NFINDR :
  - 😩 Pas assez rapide, même en optimisant l'initialisation
- VCA :
  - Rapide
  - Très bons résultats si on ne considère que la zone de sable (6 pôles de mélange)
  - Résultats instables lorsque le nombre de pôles de mélange augmente (image entière > 15 pôles mélange)
- OSP :
  - Rapide
  - Résultats reproductibles. Quand le nombre de pôles de mélange recherché augmente → rajoute des pôles, mais ne change pas les premiers pôles extraits.




## Pré-traitement : tri des pixels végétation

Zone de végétation seule : forte variabilité

- → tri par NDVI
- → sur les pixels de la zone « végétation » restants : variabilité importante
- ⇒ Nécessité de rechercher un nombre de pôles de mélange important



zone de ndvi >0.25

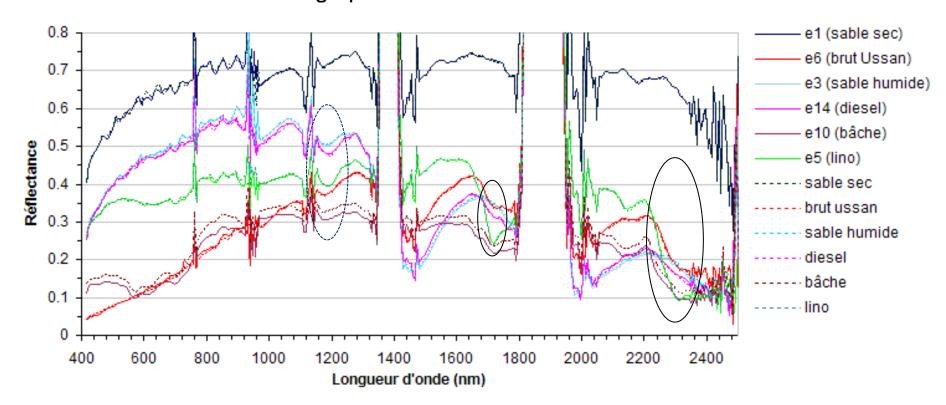


Statistique des spectres de la zone végétation non éliminés par le test NDVI

# - Extraction de 15 pôles de mélange par OSP

#### Recherche des pôles de mélanges « hydrocarbures » et sables

→ Calcul des angles spectraux entre les 15 pôles des mélange extraits (e<sub>i</sub>) et les spectres « hydrocarbures » et sables vrais

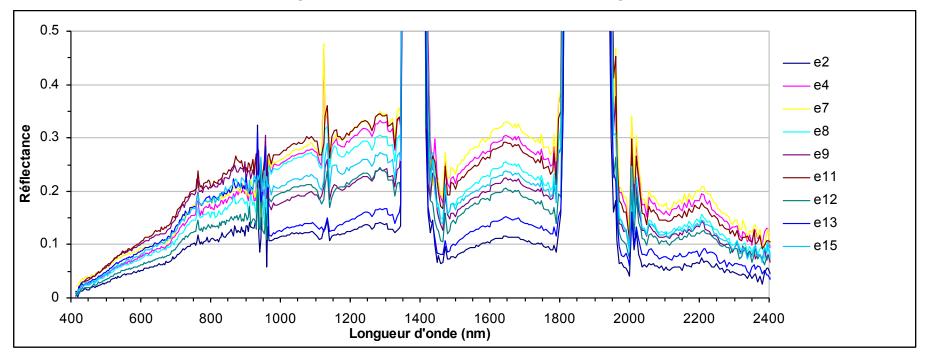

Angles spectraux et RMSE entre spectres des matériaux « hydrocarbures » et « sables » et les spectres des pôles de mélange les plus ressemblants au sens du SAM

| Matériau /pôle de<br>mélange le plus proche | SAM<br>(rad) | RMSE  |
|---------------------------------------------|--------------|-------|
| Sable sec / e1                              | 0.016        | 0.012 |
| Sable+Brut Usan / e6                        | 0.022        | 0.009 |
| Sable humide / e3                           | 0.026        | 0.013 |
| Sable+Diesel / e14                          | 0.015        | 0.007 |
| Bâche plastique / e10                       | 0.024        | 0.010 |
| Lino / e5                                   | 0.032        | 0.014 |



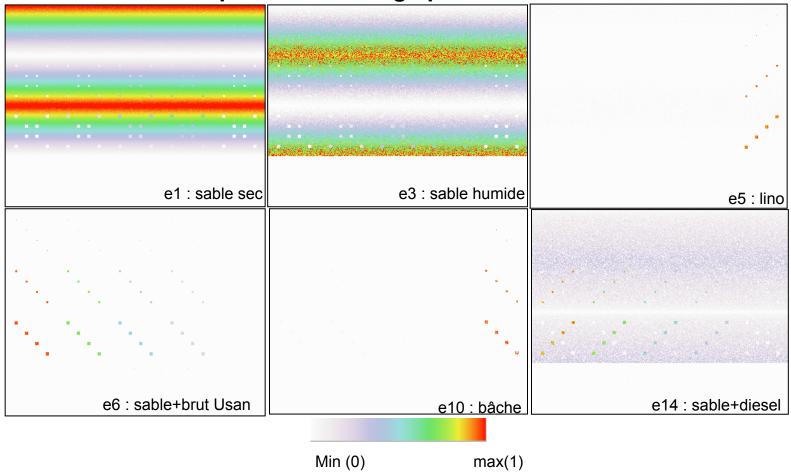
## - Extraction de 15 pôles de mélange par OSP

## Pôles de mélange présents dans la zone sable




Tous les pôles de mélange de la zone sable sont extraits, y compris les pôles sable +diesel et sable humide qui sont très semblables




# - Extraction de 15 pôles de mélange par OSP

Pôles de mélange présents dans la zone « végétation »

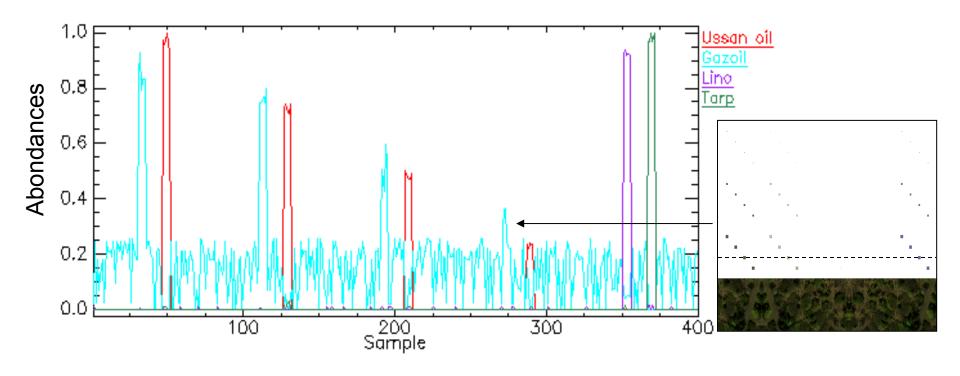




#### Abondances des pôles de mélange présents sur la zone sable



Les plus difficiles à différencier : sable humide et sable + diesel

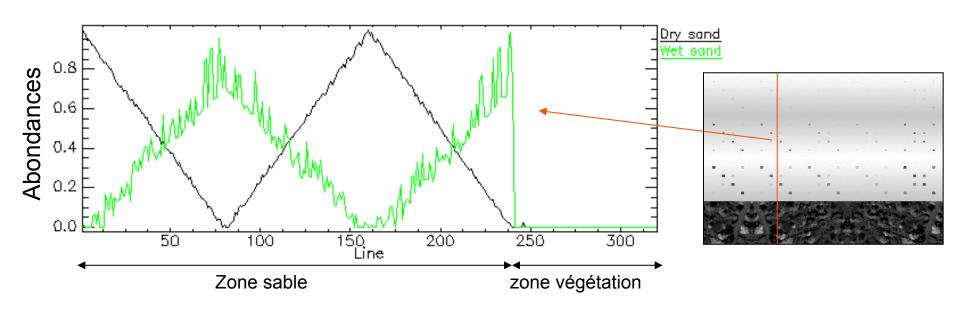

Autres pôles : - e12 : sable humide/sable diesel (faiblement abondant sur l'image)

- e2, e4, e7, e8, e9, e11, e13, e15 présents sur faible nombre de pixels dans la zone végétation



Abondances des 4 pôles « hydrocarbures » le long d'une ligne de l'image : → on retrouve les abondances de chaque pôle.

Moins précises pour le mélange sable+diesel à cause d'une confusion avec le sable humide






Abondances des pôles sable sec et sable humide le long d'une ligne de l'image :

→ on retrouve les abondances

(moins précises pour le sable humide: confusion avec le mélange sable+diesel)





#### Comment trier de façon automatique les pôles de mélange ?

→ Calcul d'indices hydrocarbure sur les spectres des pôles de mélange

Différenciation mélange HC /et végétation sèche difficile → à compléter avec un calcul d'indice de végétation

| I1    | Pôle de<br>mélange | 12    | Pôle de<br>mélange | somme | pôle de mélange              |
|-------|--------------------|-------|--------------------|-------|------------------------------|
| 1.69  | e5                 | 3.800 | <b>e5</b>          | 5.49  | e5 (lino)                    |
| 1.23  | <b>e6</b>          | 2.13  | e10                | 3.33  | e10 (bâche)                  |
| 1.20  | e10                | 1.75  | <b>e6</b>          | 2.97  | e6 (brut usan)               |
| 1.18  | e14                | 1.39  | e14                | 2.57  | e14 (diesel)                 |
| 1.11  | e2                 | 1.38  | e2                 | 2.49  | e2 (zone vég.)               |
| 1.10  | e15                | 1.37  | e11                | 2.47  | e11 (zone vég.)              |
| 1.10  | e8                 | 1.36  | e13                | 2.44  | e13 (zone vég.)              |
| 1.10  | e11                | 1.34  | e4                 | 2.43  | e4 (zone vég.)               |
| 1.093 | e4                 | 1.33  | e8                 | 2.42  | e8 (zone vég.)               |
| 1.09  | e12                | 1.32  | e7                 | 2.42  | e7 (zone vég.)               |
| 1.09  | e7                 | 1.27  | e15                | 2.36  | e15 (zone vég.)              |
| 1.09  | e9                 | 1.26  | e12                | 2.36  | e12 (zone vég./HC/sable sec) |
| 1.09  | e13                | 1.25  | e9                 | 2.34  | e9 (zone vég.)               |
| 1.05  | e3                 | 1.14  | e3                 | 2.19  | e3 (sable humide)            |
| 1.02  | e1                 | 1.03  | e1                 | 2.05  | e1 (sable sec)               |



#### **Conclusions**

Mise en place d'une stratégie pour extraire les pôles de mélange « hydrocarbure »

- Rejet des pixels végétation par NDVI
- Extraction des pôles de mélange : OSP méthode rapide, robuste
- Possibilité de trier les pôles de mélange « hydrocarbures » par calcul d'indices HC
  → mais à compléter par un calcul d'indice de végétation
- Discrimination des différents hydrocarbures : sable+diesel, sable+USAN, plastique, lino

# **Perspectives**

- Application à une image semi-synthétique plus complexe :
  - Autre types de mélanges intimes terre/HC
  - Autres mélanges surfaciques (terre/HC et végétation; terre et végétation)
- Application à des cas réels

