Détection et identification par filtrage adapté de panaches d'aérosols industriels en imagerie hyperspectrale

> 4ème colloque SFPT - GH Grenoble - 11 au 13 mai 2016

DE LA RECHERCHE À L'INDUSTRIE

THE FRENCH AEROSPACE LAB

Yannick PhilippetsPierre-Yves FoucherRodolphe MarionXavier BriottetCEA/DGAONERACEAONERA

CONTEXTE ET OBJECTIFS

Intérêts d'étudier les aérosols :

- Scientifique (impact radiatif sur le climat, pollution de l'air, ...)
- Sécurité & Défense (quantification de rejets atmosphériques, identification d'activités industrielles, …)

Imagerie hyperspectrale adaptée aux besoins :

- Résolution spatiale (métrique ou décamétrique)
- Domaine 0,4 2,5 µm et résolution spectrale de 10 nm (impact prépondérant des aérosols avant 1 µm)

Nécessité d'un rapport signal sur bruit (SNR) suffisant pour différencier des particules aux propriétés optiques proches

Objectif de l'étude :

Développer une méthode permettant de détecter et d'identifier des aérosols industriels par imagerie hyperspectrale

Adapter le filtre CTMF aux aérosols

SIGNATURES SPECTRALES DES AÉROSOLS

Variations lentes des spectres en fonction de la longueur d'onde Impact radiatif prépondérant dans le visible et proche infrarouge 0,4 – 1,0 µm Impact en absorption et en diffusion

Propriétés optiques des aérosols (de g. à dr. : extinction normalisée, albédo et asymétrie) pour deux types de particules (suie mode fin et sulfates mode fin) entre 0,4 et 2,5 μ m (à τ^{550} =0,25)

Spécificités des aérosols industriels :

- Natures très diverses, propriétés peu ou mal connues
- Faibles épaisseurs optiques attendues (inférieures à 0,5)
- Modifications rapides de ces propriétés (intéractions avec l'atmosphère, réactions chimiques, durée de vie, ...)

Nécessité de déterminer des familles représentatives des principaux aérosols de panaches (proches de la source)

ONERA

FAMILLES REPRÉSENTATIVES DES PRINCIPAUX REJETS INDUSTRIELS

Suie (black carbon) : combustion de charbon ou de composés avec une forte concentration de graphite (production d'énergie)

- **Brown carbon :** composés carbonés organiques colorés à forte réfraction, issus de la combustion de matière organique (production d'énergie)
- **Carbone organique** : composés carbonés organiques non réfractants, issus de la combustion de biomasse verte (chauffage, production d'énergie)
- **Sulfates** : soit d'origine primaire, lors de combustion de charbon chargé en soufre, soit d'origine secondaire, après réaction de gaz (type SO₂) et de composés atmosphériques produits de combustibles fossiles (chauffage, raffineries)
- **Métaux** : poussières métalliques de composition très variable (industrie métallurgique)
- Eau (gouttelettes) : aéroréfrigérants (sous des conditions atmosphériques permettant la condensation de la vapeur d'eau)

Suie, Centrale à mazout de Fawley, Hampshire (GBR)

Sulfates, raffinerie Sunco Energy, Edmonton (CAN)

Aéroréfrigérants, centrale nucléaire de Tricasti (FRA)

Méthode déjà utilisée avec succès sur des gaz industriels tels que CO_2 , CH_4 et N_2O [Dennison et al. 2013 ; Thorpe et al. 2013 ; Thorpe et al. 2012]

Équation du transfert radiatif

Cas d'une atmosphère standard, dans le domaine réflectif 0,4 – 2,5 µm :

- Un premier terme exprimant la diffusion du rayonnement dans l'atmosphère
- Un second terme exprimant la réflexion du rayonnement par le sol et sa traversée de l'atmosphère

$$L_{capteur}(\lambda) = L_{atm}(\lambda) + \frac{E_{sol}(\lambda)}{\pi} \cdot \rho_{sol}(\lambda) \cdot T_{atm}(\lambda)$$

En présence d'un panache d'aérosols :

• Tous les termes radiatifs (composantes directes et diffuses) sont affectés par l'aérosol, en absorption et en diffusion

$$L_{capteur}^{a\acute{e}ro}(\lambda) = L_{atm}^{a\acute{e}ro}(\lambda) + \frac{E_{dir}^{a\acute{e}ro}(\lambda) + E_{dif}^{a\acute{e}ro}(\lambda)}{\pi}, \rho_{sol}(\lambda) \cdot \left(T_{dir}^{a\acute{e}ro}(\lambda) + T_{dif}^{a\acute{e}ro}(\lambda)\right)$$

• Pas de modélisation analytique possible pour les termes diffus

tous

Construction de la signature d'une famille d'aérosols pour le filtre CTMF

Différentiel de luminance entre les cas avec et sans panache d'aérosol :

 $\Delta L(\lambda) = L_{capteur}^{a\acute{e}ro}(\lambda) - L_{capteur}(\lambda)$

Modélisation du différentiel de luminance en fonction des différentiels de chaque terme radiatif et de l'épaisseur optique à 550 nm du panache T⁵⁵⁰ par rapport à une référence (suivant l'atmosphère de référence et le type de sol) :

Reconstruction possible de la signature **b** à partir d'une base de données de triplets { ΔL_{atm} ; ΔE_{sol} ; Δt_{atm} } valables pour chaque famille d'aérosols dans une atmosphère donnée et à une épaisseur optique à 550 nm de référence $au_{r
ho f}^{550}$.

VALIDATION DES HYPOTHÈSES DE MODÉLISATION (1/2)

$$\Delta L(\tau^{550}) = \frac{\tau^{550}}{\tau_{ref}^{550}} \cdot \left[\Delta L_{atm}(\tau_{ref}^{550}) + \frac{\rho_{sol}}{\pi} \cdot \left(\Delta E_{sol}(\tau_{ref}^{550}) \cdot T_{atm} + E_{sol} \cdot \Delta T_{atm}(\tau_{ref}^{550}) \right) \right]$$

<u>Hypothèse 1 :</u> linéarité des termes radiatifs en présence d'un panache de faible épaisseur optique ($\tau^{550} \ll 1$)

$$L_{atm}^{a\acute{e}ro} = L_{atm} + \Delta L_{atm} \qquad E_{sol}^{a\acute{e}ro} = E_{sol} + \Delta E_{sol} \qquad T_{atm}^{a\acute{e}ro} = T_{atm} + \Delta T_{atm}$$

<u>Hypothèse 2</u>: erreur sur la modélisation de la luminance (signature **b**), en négligeant un terme d'ordre 2 ρ_{sol} A E A T \ll A L

$$\frac{\rho_{sol}}{\pi} \cdot \Delta E_{sol} \cdot \Delta T_{atm} \ll \Delta L$$

Le terme $\Delta E_{sol} \cdot \Delta T_{atm}$ compte pour moins de 5% de la contribution totale à ΔL .

VALIDATION DES HYPOTHÈSES DE MODÉLISATION (2/2)

$$\Delta L(\tau^{550}) = \frac{\tau^{550}}{\tau_{ref}^{550}} \cdot \left[\Delta L_{atm}(\tau_{ref}^{550}) + \frac{\rho_{sol}}{\pi} \cdot \left(\Delta E_{sol}(\tau_{ref}^{550}) \cdot T_{atm} + E_{sol} \cdot \Delta T_{atm}(\tau_{ref}^{550}) \right) \right]$$

<u>Hypothèse 3 :</u> linéarité en épaisseur optique des différentiels des termes radiatifs sur un voisinage de τ_{ref}^{550}

$$\Delta L_{atm}(\tau^{550}) = \frac{\tau^{550}}{\tau_{ref}^{550}} \cdot \Delta L_{atm}(\tau^{550}_{ref}) \qquad \Delta E_{sol}(\tau^{550}) = \frac{\tau^{550}}{\tau_{ref}^{550}} \cdot \Delta E_{sol}(\tau^{550}_{ref}) \qquad \Delta T_{atm}(\tau^{550}) = \frac{\tau^{550}}{\tau_{ref}^{550}} \cdot \Delta T_{atm}(\tau^{550}_{ref})$$

Modélisation correcte pour des épaisseurs optiques inférieures à 0,5

| PAGE 9

FAISABILITÉ SUR DONNÉES SIMULÉES (1/4) Procédure de test

Évaluation des performances par 3 niveaux de concentration

Création d'images de synthèse avec panache carré au centre sur 3 niveaux de concentration

Classe de sol « eau » à 550 nm

Suie fine

Sulfates fins

Calcul de la matrice de variance-covariance de chaque classe de l'image \Rightarrow **C**_i

Calcul de la signature spectrale de chaque famille d'aérosols par lecture de la base de données (ΔL_{atm} , ΔE_{sol} et ΔT_{atm}) + estimation de L_{atm} , E_{sol} , T_{atm} et ρ_{sol} $\Rightarrow b$

Création du filtre de détection correspondant à chaque famille \Rightarrow $q_{_i}$

Application du filtre CTMF sur l'image

FAISABILITÉ SUR DONNÉES SIMULÉES (3/4) Tests de détection en fonction de la famille d'aérosols

CTMF suie fine

CTMF suie grossière

ONERA

Détection CTMF sur un panache de sulfates fins sur un sol de classe « eau »

4ÈME COLLOQUE SFPT-GH | GRENOBLE - 11 AU 13 MAI 2016 | PAGE 12

FAISABILITÉ SUR DONNÉES SIMULÉES (4/4) Tests de détection en fonction de la classe de sol

Détection de suie fine par CTMF

Surface ρ =0,1

Surface $\rho=0,5$

Détection de sulfates fins par CTMF

Surface « eau »

4ÈME COLLOQUE SFPT-GH | GRENOBLE - 11 AU 13 MAI 2016 | PAGE 13

TESTS PRÉLIMINAIRES SUR UNE IMAGE CASI

À partir du résultat du filtrage, l'étape suivante sera l'estimation de l'épaisseur optique (travaux en cours)

CONCLUSIONS ET PERSPECTIVES

Conclusions :

- Définition de familles d'aérosols représentatives :
 - Propriétés optiques (calcul par théorie de Mie, à partir des propriétés micro-physiques)
 - Différentiels des termes radiatifs correspondant à chaque famille dans une BDD
- Développement d'un modèle numérique de la luminance au niveau du capteur en présence d'un panache d'aérosols
- Écriture du filtre CTMF pour les aérosols
- Faisabilité satisfaisante sur des données simulées et pour les premiers tests d'un cas réel avec une image aéroportée CASI

Perspectives :

- Validation et études de sensibilités
- Estimation de l'épaisseur optique
- Tests sur un grand nombre d'images réelles de panaches industriels
- Conception d'un outil pré-opérationnel

MERCI POUR VOTRE ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Yannick Philippets | <u>yannick.philippets@cea.fr</u> Centre DIF Bruyères-le-Châtel | 91297 Arpajon Cedex Doctorant CEA/DGA Co-encadrement ONERA/CEA

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019