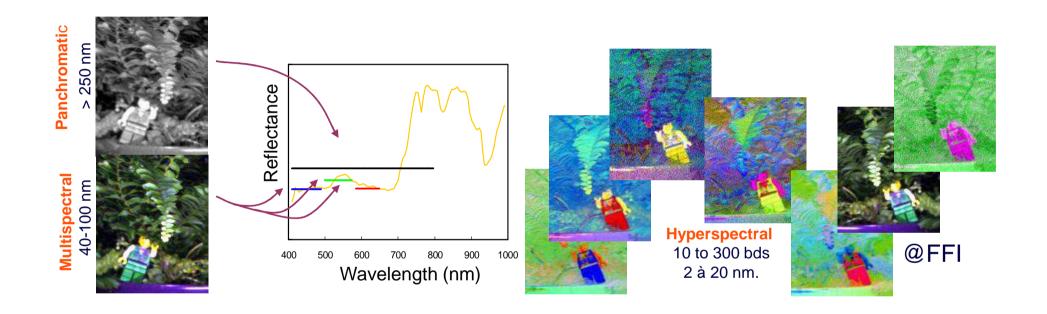


Thème A (9h30-11h00) Physique de la télédétection hyperspectrale et prétraitements (correction atmosphérique des images)

X. Briottet (with some slides@V. Carrère)

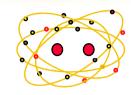
Xavier.Briottet@onera.fr

retour sur innovation


Plan du cours

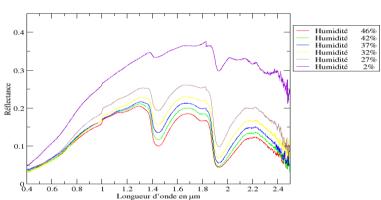
- Introduction rappels
- Principales techniques d'acquisition
- Défauts instrumentaux
- Corrections radiométriques
- Correction atmosphérique

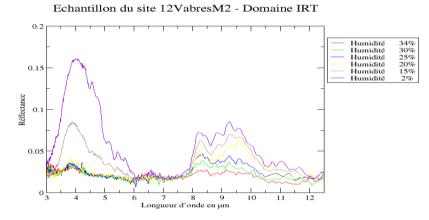
Introduction: some generalities

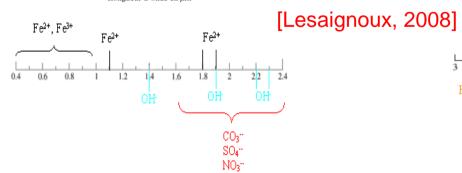


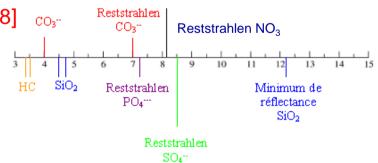
Introduction: Optical Properties Behavior

Excited state

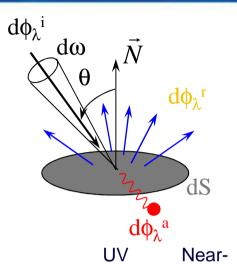

Desexcitation




Vibrational


Electronic

Echantillon du site 30PrairieA - Domaine reflectif

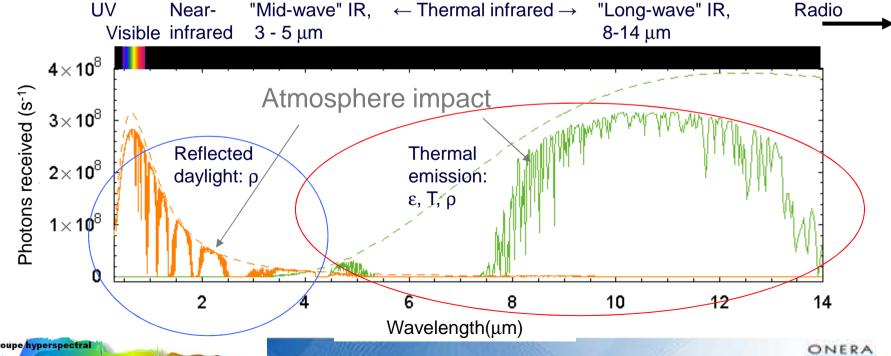


Chemical composition <==> Spectral optical properties

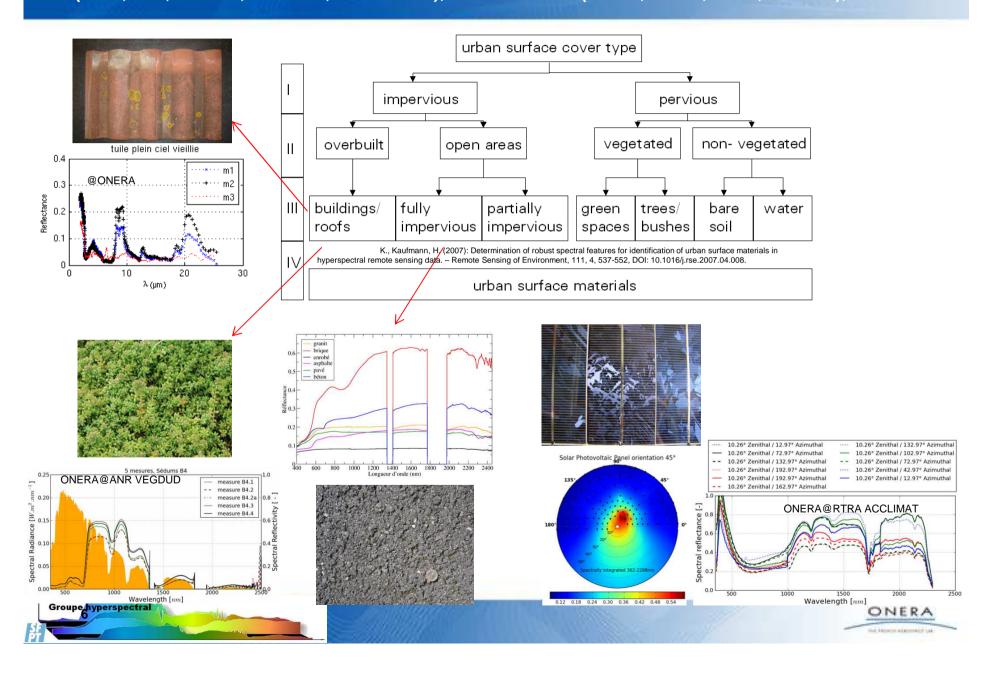
Remote sensing: optical properties, earth atmosphere system

Spectral Reflectance:

$$\rho_{\lambda}^{dh}(\theta) = \frac{d\phi_{\lambda}^{r}}{d\phi_{\lambda}^{i}}$$


Spectral Transmitivity

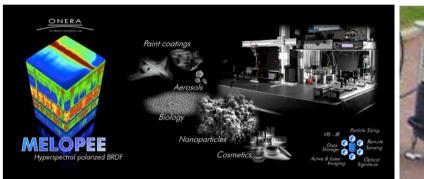
$$t_{\lambda}(\theta) = \frac{d\phi_{\lambda}^{t}}{d\phi_{\lambda}^{i}}$$

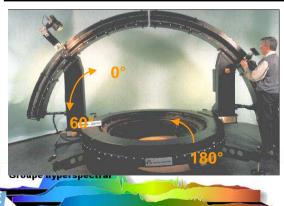

Spectral Absorptivity:

$$\alpha_{\lambda}(\theta) = \frac{d\phi_{\lambda}^{a}}{d\phi_{\lambda}^{i}} = \epsilon_{\lambda}(\theta) = \frac{L_{\lambda}^{emis}(T)}{L_{\lambda}^{CN}(T)}$$

Energy Conservation:
$$\varepsilon_{\lambda}(\theta) + \rho_{\lambda}(\theta) + t_{\lambda}(\theta) = 1$$

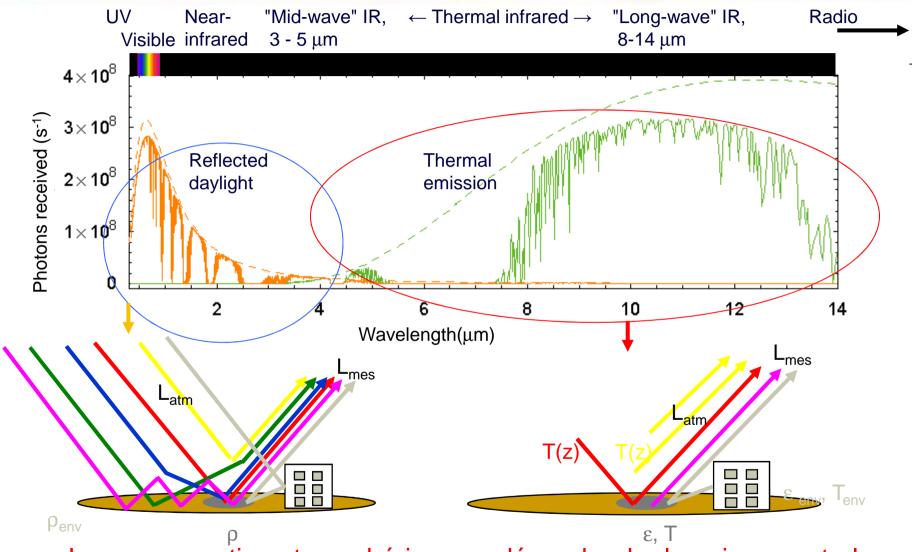
Taxonomy and data base: RTRA Acclimat (CNRM, Geode, ONERA), ANR HYEP (LIVE, IGN, ONERA, ESPACE, GIPSA-Lab), ANR VEGDUD (IRSTV, LPGN, INRA, ONERA), DSO....


Spectral Data base

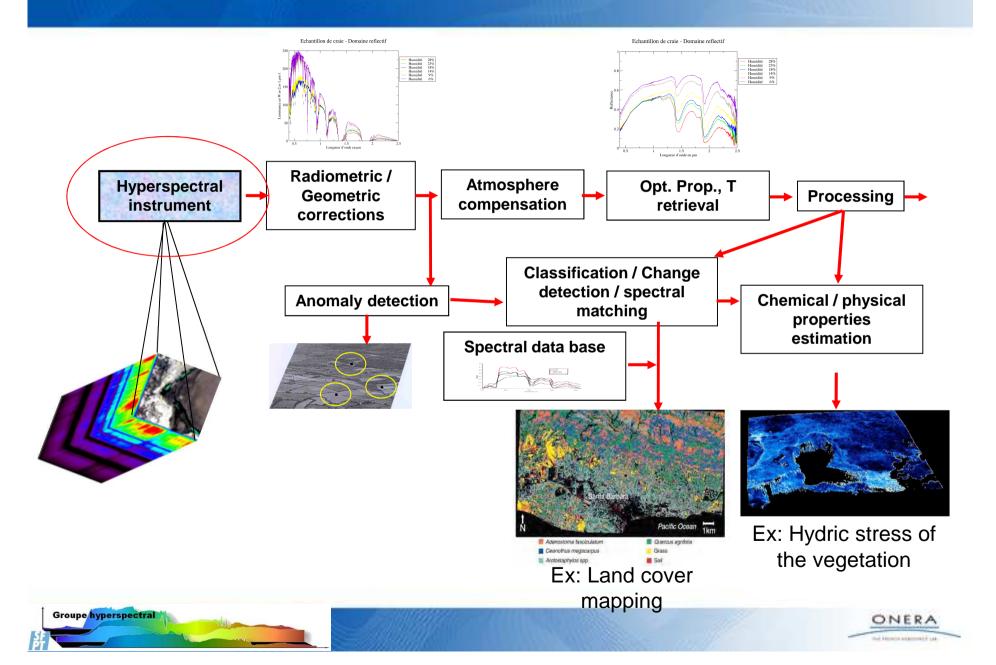

Facilities

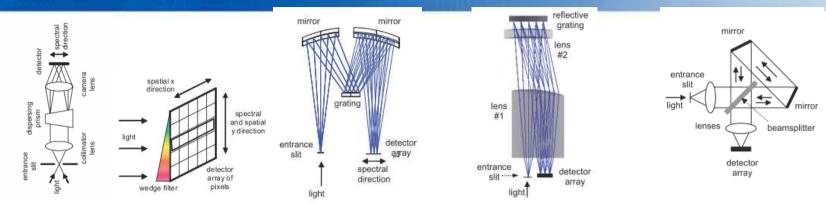
- covering the entire optical domain
- large amount of material classes: vegetation and soils with different water contents, manmade materials....

Facilities to measure the spectral reflectance



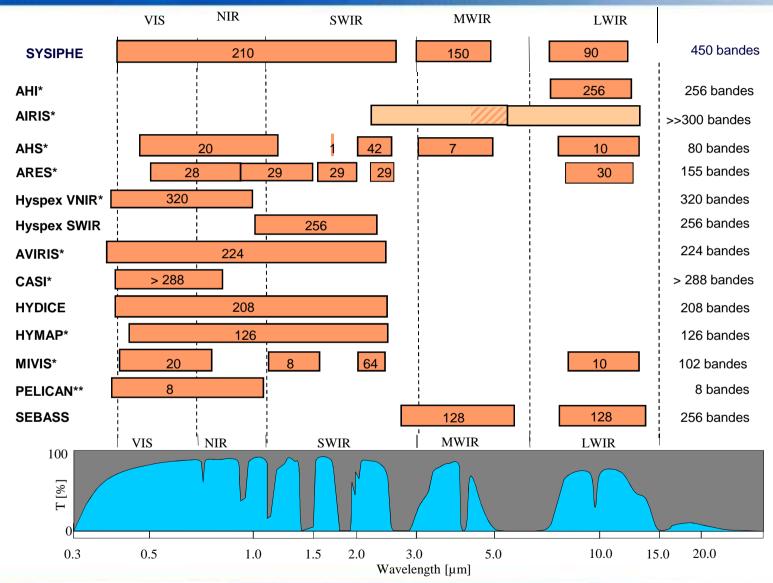
Quelles sont les sources radiatives dans le domaine optique?



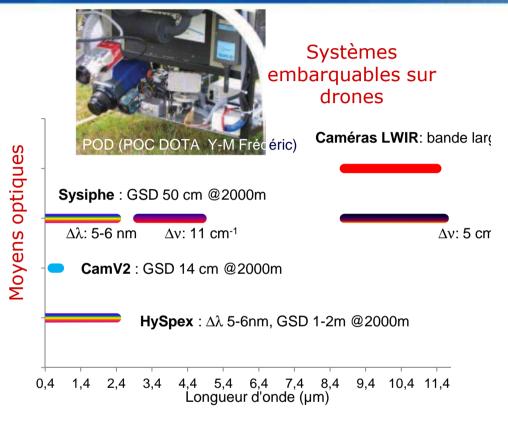


Hyperspectral Instrument

Principales techniques d'acquisition

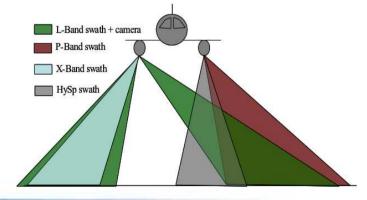

	Collimator- Disperser-Camera	Wedge filter	Offner	Dyson	Fourier Transform Spectrometer
	Simple, modulaire, bien maîtrisé	Simple, compact, léger, facile à intégrer	Compact, excellente QI, optique réflective => large bande passante, technique mature	Compact, excellente QI	Compact, système optique monolithique possible, très stable, non sensible aux erreurs d'alignement, réglage possible en vol de la résolution
ions	Lourd, encombrant, composants optiques complexes	lame de coin	Moins compact que le Dyson	Bande spectrale limitée par l'indice de réfraction de L2, spécification forte sur les éléments réfractifs, QI	Contrôle délicat des parties mobiles, plus adapté à l'IRT, SNR relativement faible, post traitement complexe, étalonnage critique, sensible à des dépointages court terme
HV	` ' '	LEISA (1997), LAC (2000)	(IUU / \ Hanarian (/IIIII)	noint chaild (INASA)	ATMOS (1985), FTHSI (2000) SIELETERS (Sysiphe, 2014)

 $A\ Comparison\ of\ Optical\ Design\ Forms\ of\ Hyperspectral\ Instruments\ for\ Remote\ Sensing,\ Timothy\ N.\ Miller,\ Raymond\ M.\ Bell,\ Jr.,\ OSA\ /\ ORS\ 2010$


Instruments MS/HS aéroportés : couverture spectrale

Instrumentations aéroportées ONERA

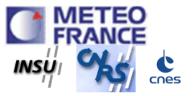
Sysiphe (POC L. Rousset-Rouvière)



HySpex (POC P. Déliot)

Campagnes aéroportées multiinstruments

POD SETHI Radar/optique



Principaux avions avec « trappe photo » utilisés par l'Onera

UMS /SAFIRE Toulouse/Francazal

Endurance max: 5 h Max range 4100 km Plafond: 12000 m CU max: 1200 kg

Endurance max: 6 h Max range 2200 km Plafond: 7500 m CU max: 3300 kg

IGN/King Air

Endurance max: 4 h Max range 1000 km Plafond: 4000 m CU max: 180 kg

Endurance max: 5 h Max range 2200 km Plafond: 9000 m CU max: 1000 kg

Endurance max: 7 h Max range 2350 km Plafond: 7500 m

CU max: 1150 kg

Autres porteurs utilisés par l'Onera : pods ou drones en coopération avec le Dpt Radar

Pods Falcon 20 (Onera/ DGA-EV Onera/AvDef)

Endurance max: 2h30 Max range 1500 km Plafond: 9000 m CU max: 120 kg/pod

Pods SETHI: bandes P, L and X, Polarimetrie, Interferometrie + CU Hyperspectral

BUSARD: Imagerie Multispectrale

Association de capteurs : Optronique & Radar

Pod Droit

Pod Gauche

Pods Stemme/Onera

Pods radar: bandes X, Ka + Panchromatique vis et IR

+ hyperspectral VIS/SWIR

Drones/Onera

Endurance max: Max range 1200 km Plafond: 9000 m CU max: 50 kg/pod

TERRISCOPE (2016-2018) Les porteurs - Plateforme de mesures avions légers et drone de classe 150kg MOYENS A ACQUERIR

Multispectral VISNIR

- •1 à 8 bandes
- •Résolution spatiale 1-2 cm
- •~6000 x 4000 pixels (min 2000 x

Multispectral LWIR/MWIR

- Faible bruit
- •1 à 4 bandes (8-12μm et potentiellement 3-5μm)
- •Résolution spatiale 2-5 cm
- •600 x 400 pixel min

Dual DigiTherm

Hyperspectral

- •0.4-2.5µm, 200 à 400 bandes
- •Résolution spatiale 5cm -1m

Exemple: Aisa FENIX sensor L: 387 mm W: 222.5 mm H: 450 mm Mass: 15 kg

Lidar 3D FW

- •Lidar télémétrique « fullwave »
- •4 point / m2 min
- •Résolution spatiale 5 cm min
- •Géoreférencement

TERRISCOPE (2016-2018) Les porteurs – Plateforme de mesure drone classe 25 kg Moyens en cours d'acquisition

Multispectral VISNIR

- •1 à 8 bandes
- •Résolution spatiale 1-2 cm
- •~5000 x 4000 pixels (min 1000 x 1000)

Multispectral MWIR/LWIR

- •Faible bruit
- •Bi-bande (8-12µm et potentiellement 3-5µm)
- •Résolution spatiale 2-5 cm
- •600 x 400 pixel min

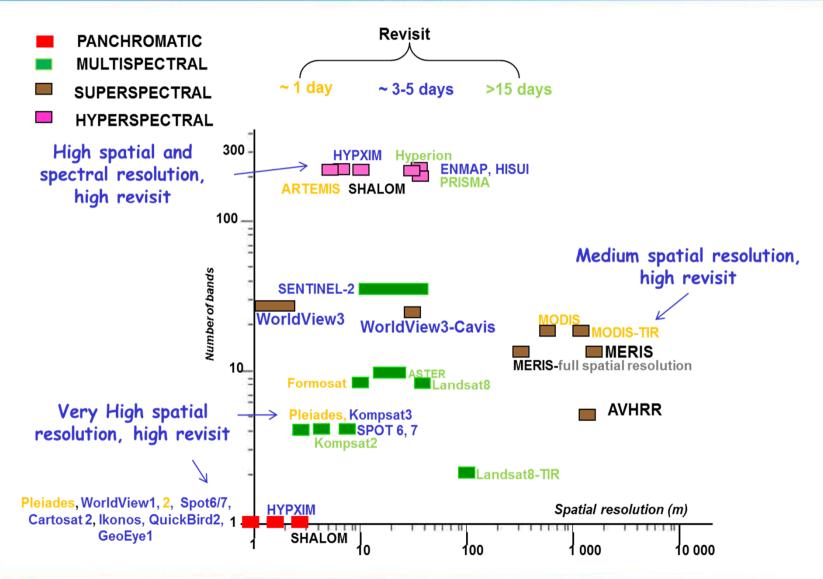
Sofradir SOIE

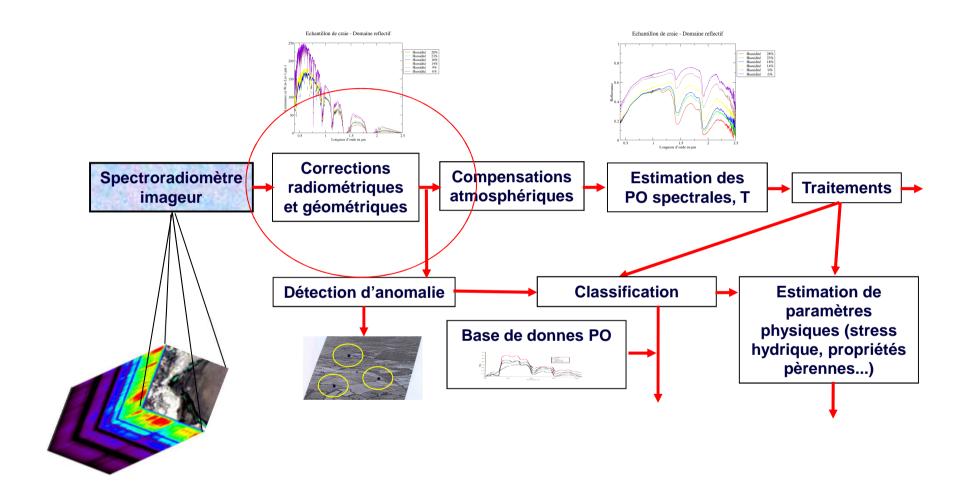
Lidar 3D FW

- Lidar télémétrique
 « fullwave »
- •4 point / m2 min
- •Résolution spatiale 5 cm min
- •Géoreférencement

Hyperspectral

- •0.4-1µm 60 à 120 bandes
- •0.4-2.5µm si possible
- •Résolution spatiale ~5-20cm





Quelques instruments MS/HS satellitaires

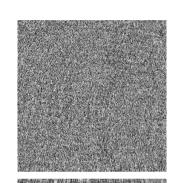
Chaîne d'exploitation typique d'un système Imageur hyperspectral

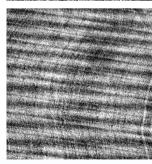
Pourquoi des corrections géométriques et radiométriques?

L'instrument n'est pas parfait...Hélas!

Comme tout instrument de mesure, pour exploiter ses acquisitions, il nous faut :

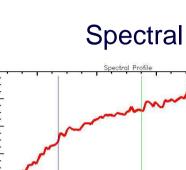
- ☐ Evaluer / quantifier le bruit instrumental : SNR, Courant d'obscurité, égalisation (flat field) correction des sensibilités relatives interdétecteur, défauts instrumentaux (tilt, smile)
- ☐ Convertir ses données en grandeur physique :
 - Spectral : canal / longueur d'ondes (position des absorptions spécifiques)
 - Radiométrique : convertir les comptes numériques en sortie de la chaîne optoélectronique de détection en grandeur physique (luminance: W. m⁻².sr⁻¹.µm⁻¹)

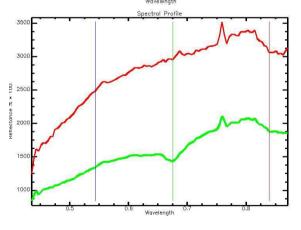

Caractérisation de l'instrument Etalonnage


Caractérisation de l'instrument: bruit instrumental

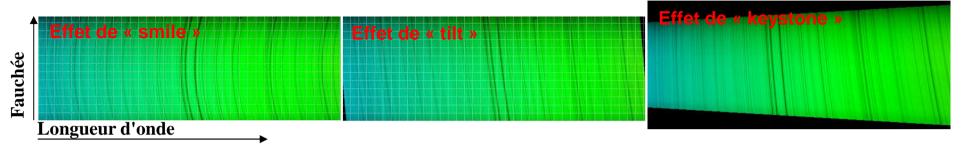
Aléatoire interdétecteur Sensibilité Evolutions temporelles

Spatial





Méthode en laboratoire : Sphère intégrante



Caractérisation de l'instrument: défauts instrumentaux

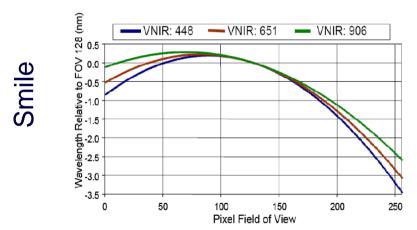
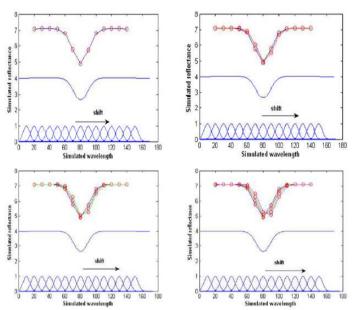



Figure 1-1 Pre-launch smile calibration curves of band 10 (blue), band 30 (magenta) and band 55 (green) for Hyperion (Courtesy CSIRO).

Méthode en laboratoire: source ponctuelle Figure 2-5 Simulation of smile effect; resampled spectrum without any shift in response function (top left), resampled spectra with 1 nm shift (top right), with 1+2 nm shift (bottom left) and with 1+2+3 nm shift (bottom right).

Caractérisation de l'instrument: défauts instrumentaux

Egalisation

En laboratoire : sphère intégrante (Ex VITO)

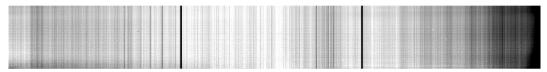


Figure: Normalizing factors for the VNIR detector.

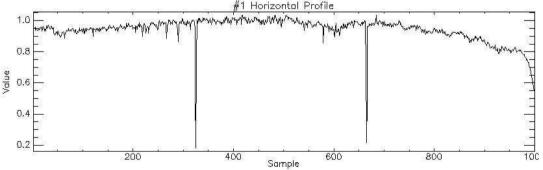


Figure: Across track profile, showing the factors of one band of the VNIR.

En orbite : cibles uniformes (sites neigeux, déserts)

Pourquoi un étalonnage?

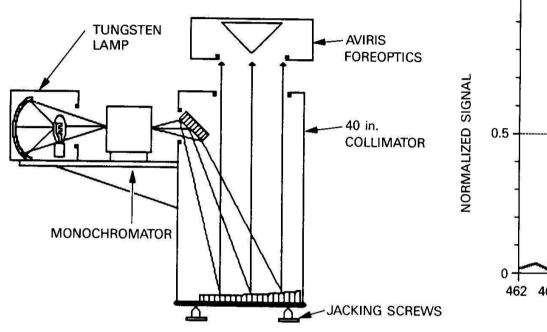
Convertir les acquisitions exprimées en compte numérique CN en sortie de la chaîne optro électronique en grandeur physique L (luminance spectrale W. m⁻².sr⁻¹.µm⁻¹).

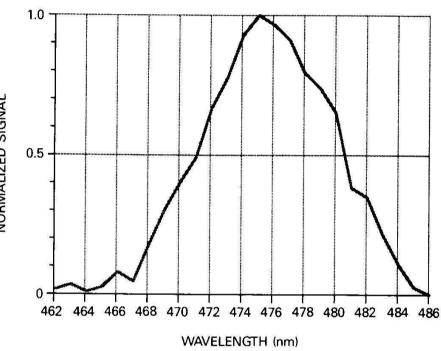
C'est une étape indispensable avant toute analyse de données hyperspectrales

Pour identifier les positions des bandes d'absorption caractéristiques de la composition chimique => *étalonnage spectral*

Pour quantifier les différents constituants grâce à l'importance de la raie d'absorption => étalonnage radiométrique $A(\lambda)$

Pour s'affranchir des évolutions temporelles de l'instrument => étalonnage multitemporel $A(\lambda, t) / A(\lambda, t0)$


Modèle radiométrique simple : L = A. (CN - « Courant d'obscurité »)

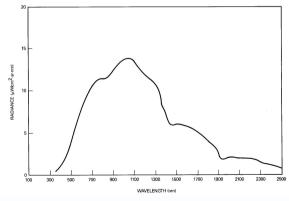


Etalonnage spectral

En laboratoire

En orbite:

- utilisation des raies d'absorption étroite de certains gaz atmosphériques (O2), 763 nm (ex de MERIS) => calage spectral
- Utilisation du glitter : interbande

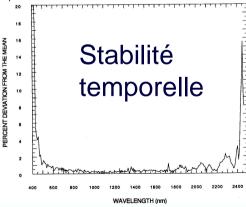


Etalonnage radiométrique

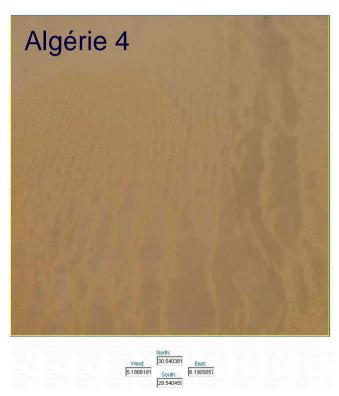
En laboratoire

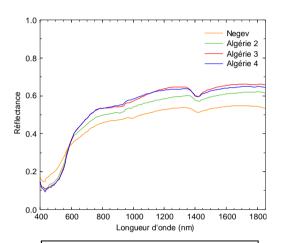
En orbite Cible terrestre de haute réflectance+ vérité

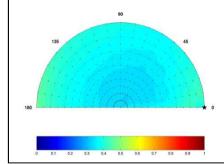
Mais aussi : sites océanique (Rayleigh), White sands...



Etalonnage multitemporel

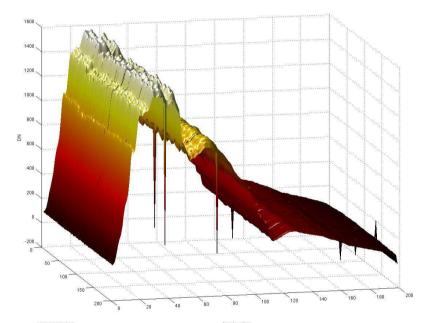

En laboratoire





En orbite

Les déserts


Mais aussi : la lune, Dome C

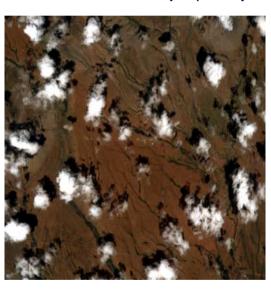
Qualité des données

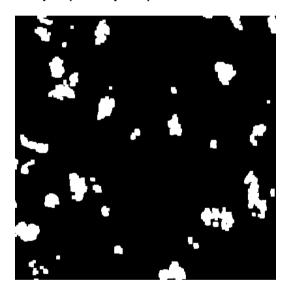
Pixels "mauvais" (proche du niveau de courant d'obscurité)

Ex: Part of the APEX SWIR detector showing bad pixels as spikes (Eufar)

Pixels saturés Saturation – L0 4000 1000 1500 Wavelength [nm]

Ex: spatial saturation quality layer showing the number of saturated bands per spatial position (Eufar)




Masque des nuages

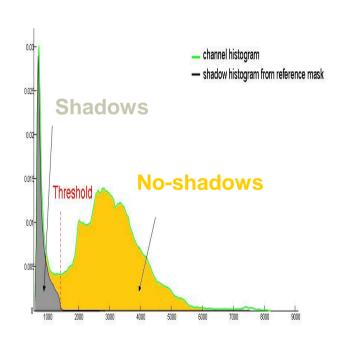
Exemple simple

Critère : $\rho^*(0.5 \,\mu\text{m}) > 35\%$ AND $\rho^*(1.6 \,\mu\text{m}) > 30\%$

@Eufar
Hyquapro

Autres méthodes plus complexes

016)

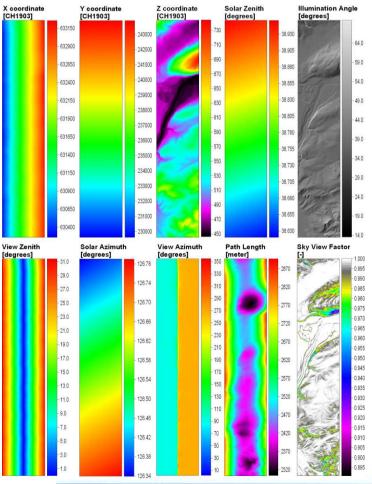

Richter, R. 2010. Atmospheric/topographic correction for airborne imagery. ATCOR-4 user guide, version 5.1

Richter, R., and Müller, A., "De-shadowing of satellite/airborne imagery", Int. J. Remote Sensing, Vol. 26, 3137-3148 (2005)

Masque des ombres

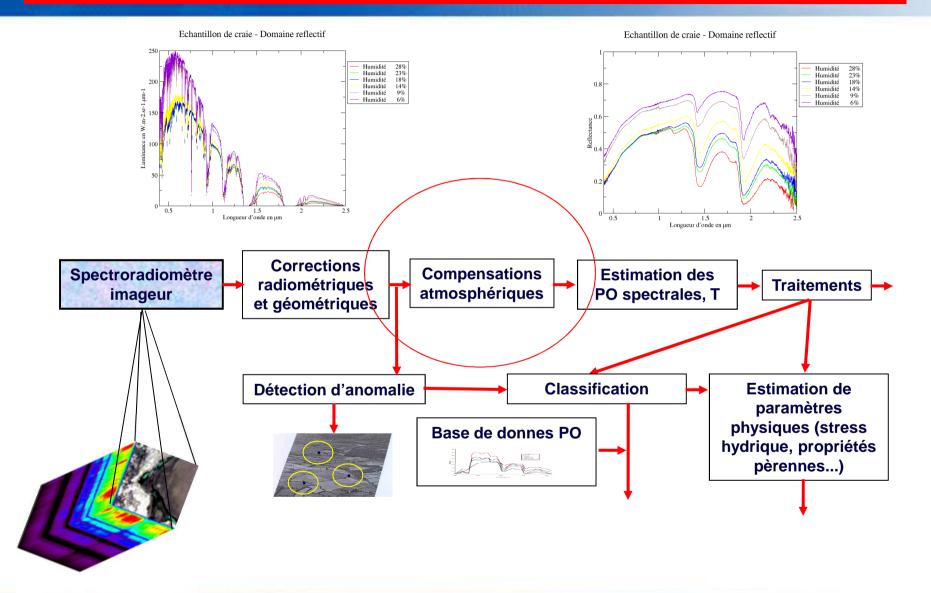
Exemple simple

Autres méthodes plus complexes (voir article ci-dessous)

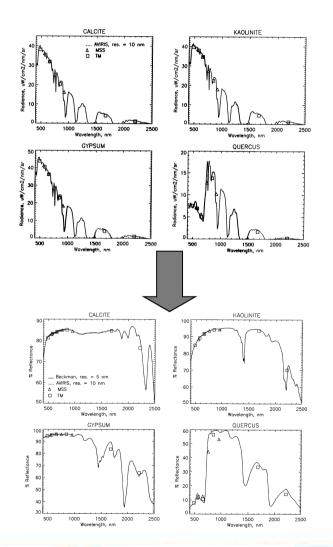

SHADOW DETECTION IN VERY HIGH SPATIAL RESOLUTION AERIAL IMAGES: A COMPARATIVE STUDY, K. R. M. Adeline, M. Chen, X. Briottet, S.K. Pan, N.

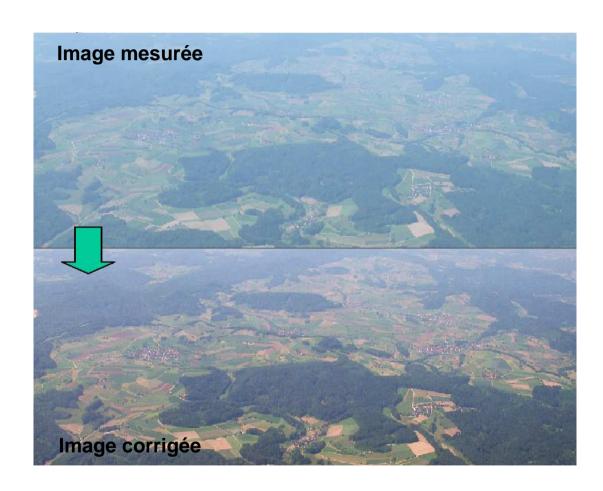
Identification des géométries de BRDF critique

Objectif : fournir les informations géométriques de prises de vue et du relief pour permettre d'alerter l'utilisateur



Eufar@Hyquapro




Chaîne d'exploitation typique d'un système Imageur hyperspectral

Pourquoi des corrections atmosphériques ?

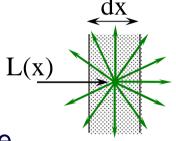
Quelques rappels : Atténuation du rayonnement le long d'un trajet

- Milieu M homogène de molécules et d'aérosols :
 - la perte de rayonnement direct s'écrit: $dL = -\sigma L(x) . dx$ où σ est le coefficient d'extinction du milieu
 - sur un trajet A \rightarrow B, on a: L(x) L(x) $L(B) = L(A) \cdot \exp\left(-\int_A^B \sigma(x).dx\right) = \int_A^B \sigma(x)dx$ l'épaisseur optique du trajet.
 - L'exponentielle de l'épaisseur optique est une transmission
- L'extinction $\sigma = \sigma_a + \sigma_s$ est due à:
 - absorption par le milieu (σ_a)
 - diffusion = redistribution d'une partie de l'énergie (σ_s)

Quelques rappels : contribution du milieu traversé le long d'un trajet

Cette contribution est modélisée par un terme source J :

$$dL = \sigma J(l).dl$$


Diffusion par le milieu:

- une partie σ_s de l'énergie incidente est diffusée
- répartition spatiale de l'énergie selon la fonction de phase
 - la fonction de phase dépend de la particule diffusante

Émission par le milieu:

- l'émission du milieu est donnée par la loi de Kirchhof ($\epsilon_{\lambda}(\theta) = \alpha_{\lambda}(\theta)$)
 - émissivité du milieu = absorption du milieu

$$\Rightarrow \quad \boxed{\varepsilon_{milieu} = \sigma_a.dx} \quad \text{et} \quad \boxed{dL_{emis} = \sigma_a.L_{\lambda}^{CN}(T_{couche}).dx}$$

Équation de transfert radiatif généralisée

$$\frac{dL}{\sigma . dl} = -L(l) + J(l)$$
= Atténuation + Source

<u>Cas particulier 1</u>: les contributions de l'émission thermique et de la diffusion sont négligeables.

$$\frac{dL}{\sigma_a.dl} = -L(l) \qquad \text{soit} \quad L(B) = L(A).e^{-\int_A^B \sigma_a(l).dl} = L(A).T(A - > B)$$

L'atténuation d'une radiation traversant un milieu homogène absorbant suit une loi exponentielle dont l'argument est le produit du coefficient d'absorption par la longueur du trajet.

Application: dans l'atmosphère en condition de ciel clair :

- λ >1 µm : la diffusion de la lumière est négligeable
- λ dans [1 μ m 2,5 μ m], l'émission atmosphérique est négligeable

Cette équation sert de base pour le transfert radiatif dans le domaine [1 µm – 2,5 µm].

Équation de transfert radiatif généralisée

Cas particulier 2 : le milieu n'est pas diffusant et en équilibre thermodynamique à la température T (Equation de Schwarzchild).

$$\frac{dL}{\sigma_a.dl} = -L(l) + L_{CN}(T,l) \quad \text{soit} L(B) = L(A).e^{-\int_A^B \sigma_a(l).dl} + \int_A^B L_{CN}(T,l).e^{-\int_l^B \sigma_a(l).dl}.\sigma(l).dl$$

Atténuation du signal par absorption

la contribution du milieu sur le trajet

AB.

Application : dans l'atmosphère en condition de ciel clair,

absorption et émission atmosphérique dominent dans le domaine [3 μm – 14 μm]

Cette équation sert de base pour le transfert radiatif dans le domaine [3 µm – 14 µm].

Équation de transfert radiatif généralisée

Cas particulier 3: le milieu est absorbant et diffusant uniquement.

$$\frac{dL}{\sigma(l).dl} = -L(l) + L_d(l) \quad \text{soit} \quad L(B) = L(A).e^{-\int_A^B \sigma(l).dl} + \int_A^B L_d(l).e^{-\int_l^B \sigma(l).dl}.\sigma(l).dl$$

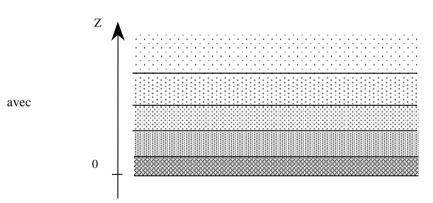
Atténuation du signal par absorption et diffusion

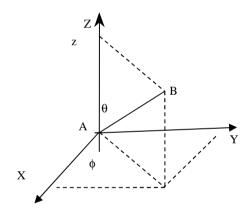
Contribution du milieu sur le trajet AB.

Application : dans l'atmosphère en condition de ciel clair,

Absorption et diffusion atmosphérique dominent dans le domaine [0,4 μm – 1,0 μm]

Cette équation sert de base pour le transfert radiatif dans le domaine $[0.4 \ \mu m - 1.0 \ \mu m]$.





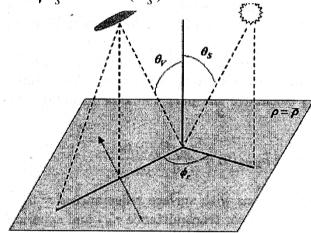
Équation de transfert radiatif généralisée

<u>Cas particulier 3</u>: atmosphère plane—parallèle = empilement de couches planes, parallèles et homogènes

• Hypothèse valide si épaisseur de l'atmosphère << rayon de courbure de la Terre (Cas d'observations satellitaires avec des angles de visée et d'éclairement solaire inférieurs à 60°)

Calcul plus simple si en épaisseur optique : $d\tau(A, l) = -\sigma(l).dl$

Avec
$$\tau(\theta) = \frac{\tau}{\mu}$$
, $\mu = \cos(\theta)$



Cas d'une surface plane homogène dans le système Terre Atmosphère

$$L_{TOA}(\mu_{s}, \mu_{v}, \phi) = L_{0}(\mu_{s}, \mu_{v}, \phi) + \frac{T(\mu_{s})T(\mu_{v})E_{0}\mu_{s}\rho_{s}(\mu_{s}, \mu_{v}, \phi)}{\pi[1 - \rho_{s}(\mu_{s}, \mu_{v}, \phi)S]}$$

Luminance atmosphérique Pas d'interaction avec la surface

$$\mu_s = \cos(\theta_s)$$
 $\mu_v = \cos(\theta_v)$

$$T(\mu) = e^{-\tau/\mu} + t_d(\mu)$$

Diffus

Interactions atmosphère - surface

 $T(\mu_s)$ Transmission totale « descendante »

 $T(\mu_{\nu})$ Transmission totale « montante »

Irradiance solaire au sommet de

l'atmosphère

Réflectance de la

 $\rho_s(\mu_s, \mu_v, \phi)$ surface (sans

atmosphère)

S Albédo sphérique =réflectance de l'atmosphère pour un éclairement isotrope

Terme de couplage Terre atmosphère

$$\left[e^{-\tau/\mu_s} + t_d(\theta_s)\right] \left[\rho_t S + \rho_t^2 S^2 + \dots\right]$$

Cas d'une surface hétérogène en milieu montagneux

$$\rho_{(i)}^{(1)}(x,y) = \frac{\pi[d^2(c_0 + c_1 DN(x,y)) - L_p(z,\Theta_v,\phi)]}{\tau_v(z,\Theta_v)[b(x,y)E_s\tau_s(z)cos\beta(x,y) + E_{dif}^*(x,y,z) + E_g(z,\rho_r)\bar{\rho}_{terrain}^{(i)}V_{terrain}(x,y)]}$$

The terms are defined as:

x, y	horizontal coordinates, corresponding to the georeferenced pixel positions;
Z	vertical coordinate, containing the elevation information from the DEM;
DN(x,y)	digital number of georeferenced pixel;
$L_p(z, heta_v,\phi)$	path radiance, dependent on elevation and viewing geometry;
$ au_v(z,\Theta_v)$	ground-to-sensor view angle transmittance, direct plus diffuse components;
$ au_s(z)$	Sun-to-ground beam (direct) transmittance;
eta(x,y)	angle between the solar ray and the surface normal (illumination angle);
b(x,y)	binary factor: b=1 if pixel receives direct solar beam, otherwise b=0;
E_s	extraterrestrial solar irradiance (earth-sun distance d=1 astronomical unit);
$E_d^*(x,y,z)$	diffuse solar flux on an inclined plane (see equation 2.17);
$E_{g}(z)$	global flux (direct plus diffuse solar flux on a horizontal surf. at elevation z);
$ ho_{terrain}^{(0)}$	= 0.1, initial value of average terrain reflectance;
$egin{aligned} E_g(z) \ ho_{terrain}^{(0)} \ ar{ ho}_{terrain}^{(i)}(x,y) \end{aligned}$	locally varying average terrain reflectance, calculated iteratively (i=1,2,3);
$V_{terrain}(x,y)$	terrain view factor (range 0-1).

DE

016)

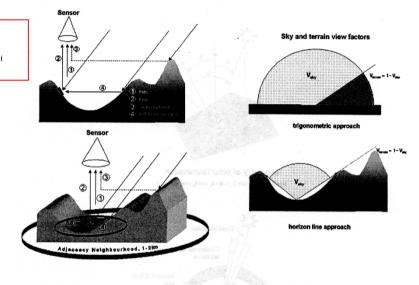


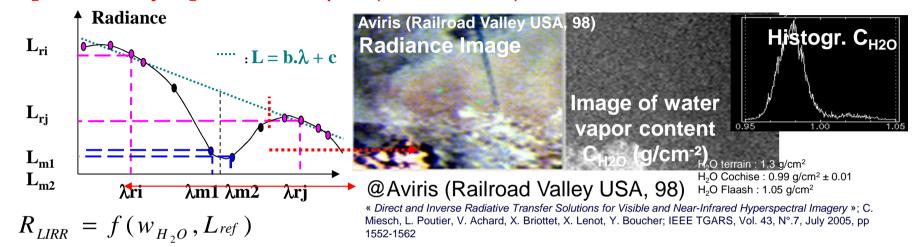
Figure 2.3: Radiation components in rugged terrain, sky view factor.

Left: schematic sketch of radiation components in rugged terrain; 1: path radiance; 2: pixel reflected radiance; 3: adjacency radiance; 4: reflected terrain radiance. Right: sky and terrain view factor.

Compensation atmosphérique

2 étapes :

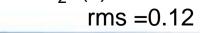
- caractérisation de l'atmosphère : détermination des composants atmosphériques ayant un impact radiatif sur le signal
 - absorbants majoritaires: H2O, O3, CO2, (CH4)
 - diffusants majoritaires : aérosols (type, abondance), gaz
- correction atmosphérique



Atmosphere Characterization

Compensation atmosphérique : domaine réflectif caractérisation de l'atmosphère

[0.4 – 2.5 µm] : Water vapor (abundance)


[3.0 – 12.0 µm]: Water vapor and Temperature profils (PhD S. Lesage)

CO₂ Absorption band: T(z) H_2O Absorption band: T(z), $H_2O(z)$

> **Method**: Neural Network Performance:

> T(z): Biais = - 0.04 K, rms=0.24 K $H_20(z)$: Biais=0.02 g/cm², $rms = 0.12 g/cm^2$

Compensation atmosphérique : domaine réflectif – caractérisation de l'atmosphère

Aérosols

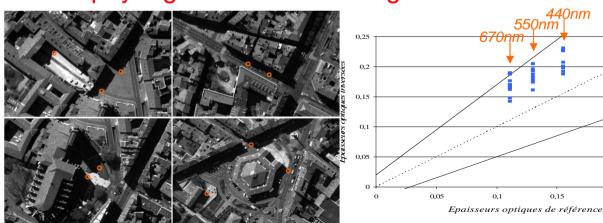
Principe: Utilisation de visée sur des cibles sombres

Contraintes : Sélection de cibles sombres (eau) et moins sombres

(vgt)

Outil ONERA-DOTA:

Etalonnage absolu des capteurs satellitaires dans le bleu et vert sur cibles océaniques [Briottet, 1996]


Sol plat : USA-FLAASH [Adler-Golden, 1998], Autre méthode : fonction de structure sur sol

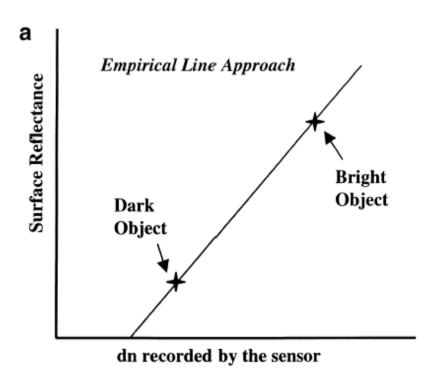
stable temporellement

Limites : ces méthodes sont adaptées à des instruments de la classe hm à km, avec un paysage fortement homogène sombre

Autres méthodes

Caractérisation des aérosols par acquisitions spectrales à très haute résolution spatiale en milieu urbain par utilisation des transitions ombres soleil

Remote sensing of aerosols in urban areas from very high spatial resolution images: application of the OSIS code to multispectral PELICAN airborne data, C. Thomas, X. Briottet and R. Santer, International Journal of Remote Sensing, Volume 34, Issue 3, 2013 Special Issue: Sustainable Urbanization, DOI:10.1080/01431161.2012.716173, pages 919-937



0.25

Corrections atmosphériques – méthode empirique

Exemple: « Empirical line »

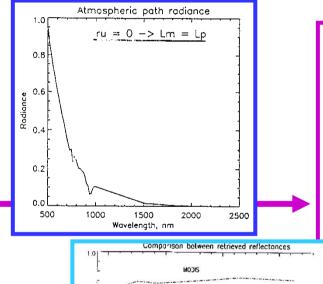
Réflectance
$$_{\lambda}$$
 = A_{λ} * CN_{λ} + B_{λ} ou A_{λ} * L_{λ} + B_{λ}

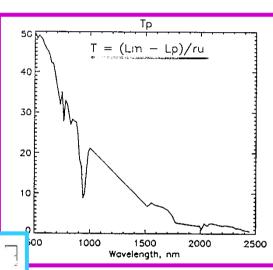
Nécessite de faire des mesures de réflectance de surface ou de connaître la réflectance de certaines cibles particulières

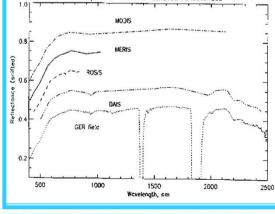
Corrections atmosphériques – Modèle de transfert radiatif

-> Utilisation de *modèles de transfert radiatif* à haute résolution spectrale (type MODTRAN)

$$L_{capteur} = L_{atm} + T * \rho$$


<u>Étape 1</u> : Calculer L_{atm}


Étape 2 : Calculer T


Modélisation avec une réflectance choisie

<u>Étape 3</u>: Utilisation de L_{atm} et de T pour corriger l'ensemble de l'image

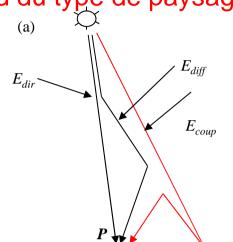
DE

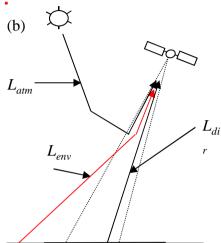
016)

Compensation atmosphérique : domaine réflectif – correction atmosphérique

Dépend du type de paysage :

Paysage: sol plat

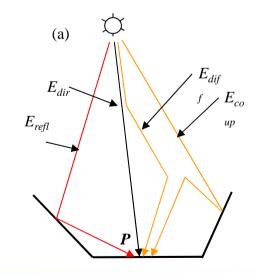

Principe: inversion de l'ETR

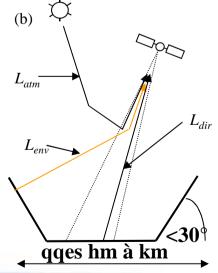

Contrainte : prise en compte des effets de couplage du à l'environnement

Etat de l'art : 6S (LOA, env. homogène),

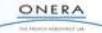
ATCOR4 (DLR), FLAASH (USA)

ONERA: COCHISE [Miesch, 2004]



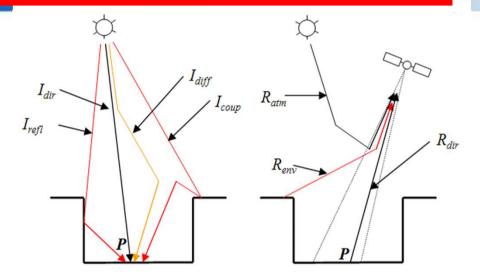

Paysage: zone montagneuse

Principe : inversion itérative de l'ETR


Contrainte : effet de pente, couplage du à
l'environnement, effet directionnel de la
réflectance

Etat de l'art : ATCOR4 (DLR)
ONERA : SIERRA [LENOT, 2003]
Performances comparables pour les
vallées larges. Si étroite, Cochise meilleur

Compensation atmosphérique : domaine réflectif – correction atmosphérique


- Urban environment issues : shadows, occultations, vertical facades
- Objective : from the sensor radiance, going back to the reflectance ρ

$$\rho = \frac{R_{tot} - R_{env} - R_{atm}}{\frac{1}{\pi} \times I_{tot} \times \tau_{up}}$$

$$I_{tot} = I_{dir} + I_{diff} + I_{coup} + I_{refl}$$

$$R_{tot} = R_{dir} + R_{env} + R_{atm}$$

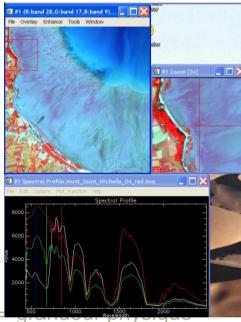
- COCHISE^[1]
 - Flat ground hypothesis:
 - I_{refl} neglected
 - I_{diff}, I_{coup}, and R_{env} processed without considering the relief
 - Limitation : no proper correction in shadowed areas

- Empirical method^[2]
 - Fast algorithm correcting both shadows and relief effects without DEM
 - Suited to classification applications
 - Limitation: some radiative terms are roughly approximated, which prevent this method to be used for spectrum identification
- ICARE^[3]
 - Efficient method suited to 3D environment (DEM known)
 - Suited to spectrum identification
- [1] Miesch et al., « Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery », Geo.and Remote Sensing, 2005.
- [2] Chen et al., « Efficient empirical reflectance retrieval in urban environment », IEEE Journ. of sel. top. in applied earth obs. and remote sensing, 2012.
- [3] Lachérade et al., « ICARE : a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D turban areas », Meteorology and Atmospheric Physics, 2008.

Exemple: sol plat

Image brute (L₀) Comptes Numériques

Etalonnage

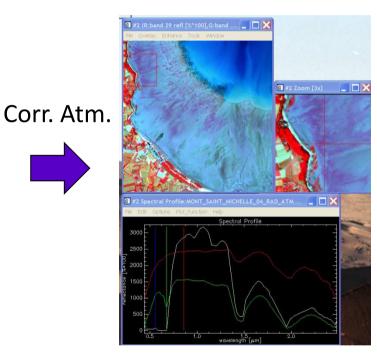


115	111	71	67	74
111	89	52	77	95
87	66	74	87	80
89	64	102	125	90
70	65	113	144	119

= f(sensibilité instrument, bruit électronique, etc.) Codage = 2¹⁰ ou 2¹² bits = 1024 ou 4046 niveaux de gris

INSTRUMENT + SOLEIL + ATMOSPHERE + SURFACE

<u>Image « étalonnée » (L₁)</u>
(W/m²/μm/sr)

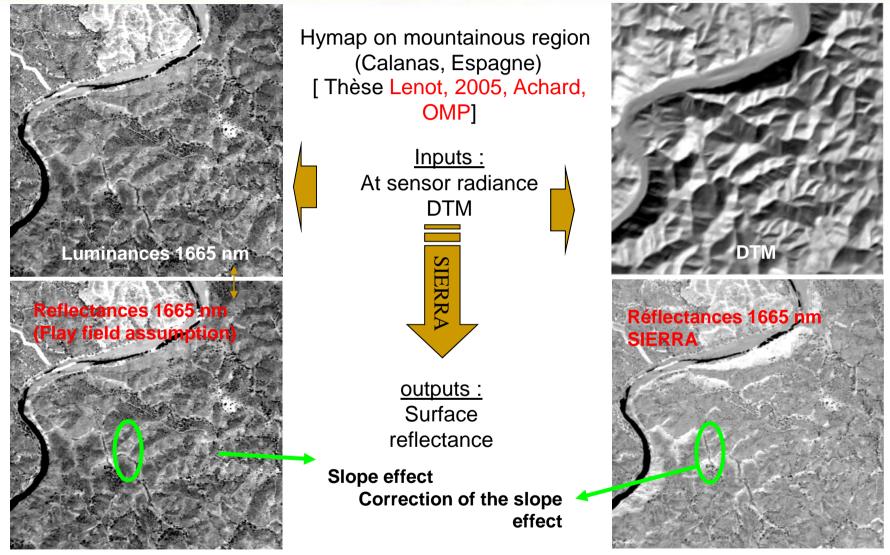


énergie / unité de surface L = (CN-bruit)* coeff étalonnage

SOLEIL + ATMOSPHERE + SURFACE

Image « corrigée » (L₂)

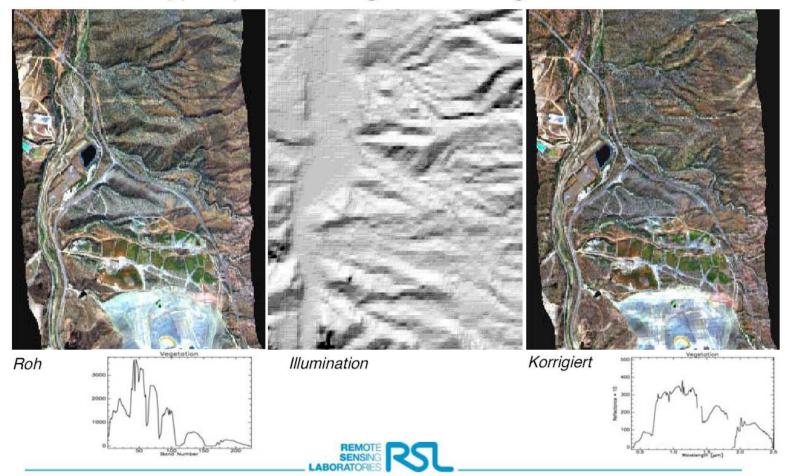
Réflectance


= quantité d'énergie réfléchie par la surface

SURFACE

Ex : comparison of atmospheric correction (0.4-2.5µm) method over mountainous area

Similar as ATCOR4 for not too deep mountains, but SIERRA better in sharp valley



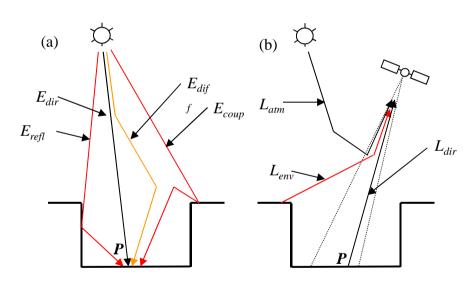
Ex: Atmospheric correction (0.4-2.5µm) over mountainous area (SIERRA)

Advanced Imaging and Spectroscopy

SSOM Engelberg Lectures 5.3.07

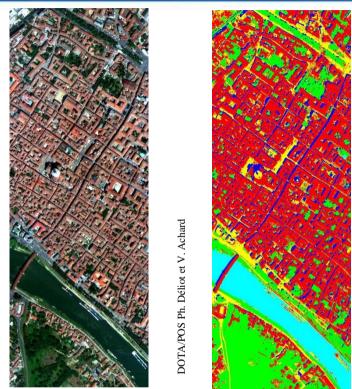
Atmospheric/radiometric preprocessing of hyperspectral image data using ATCOR4

Compensation atmosphérique : domaine réflectif (3) – correction atmosphérique

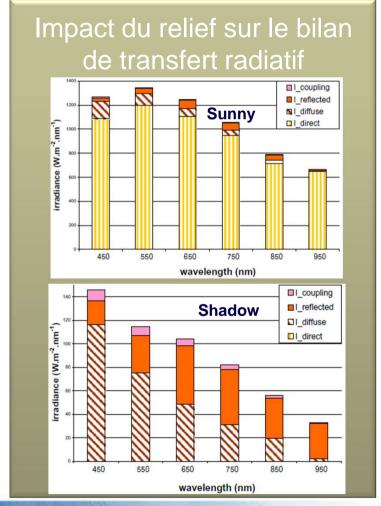

Paysage: milieu urbain

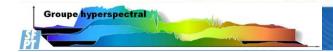
Principe: inversion itérative de l'ETR

Contrainte: effet de pente, couplage du à
 l'environnement, ombrage, effet
directionnel, façade verticale, occultation


Etat de l'art : rien

ONERA: ICARE [thèse Lachérade, 2008, Miesch, Briottet, IGN, CNES] avec des limitations (visées nadir, effet directionnel, hypothèses sur les façades)




Compensation atmosphérique : domaine réflectif – correction atmosphérique

"2008 Remote Sensing Data Fusion Contest" @P. Deliot, V.Achard – ONERA, [670nm,550nm,470nm]; [buildings, shadow, vegetation, road, river], 96% of well classified pixels

Main Limitation: shadows

Ex 2 : Correction atmosphérique en milieu urbain dans le VIS-SWIR [Lachérade et al., 2008] – ICARE

Campagne Capitoul ONERA-IGN (PELICAN) sur Toulouse (2003)

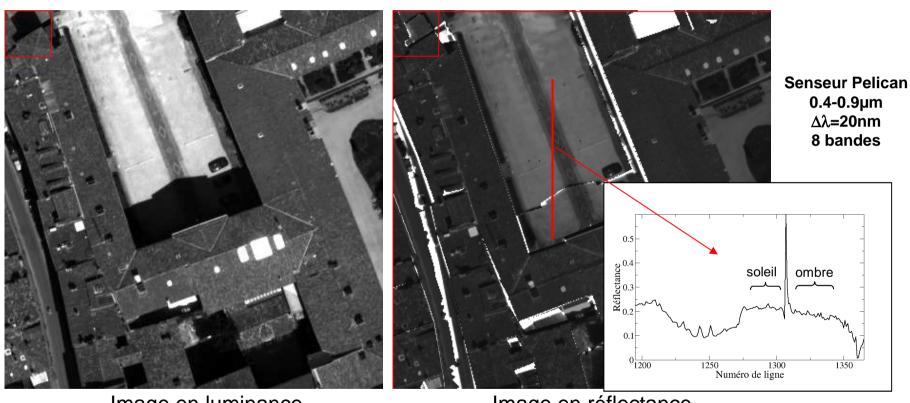
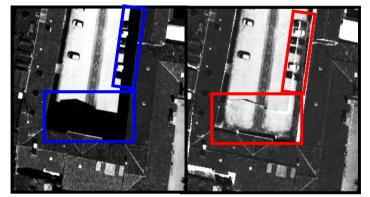


Image en luminance

Image en réflectance

Apport : amélioration de la classification des matériaux en milieu urbain en tenant compte des effets de pente et des ombres

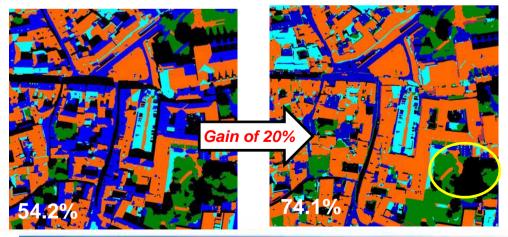


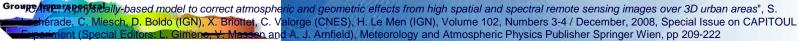
Atmospheric correction: ICARE

ICARE: a MNE is required an input

 $[0.4 - 2.5 \mu m]$: to retrieve the surface reflectance

Depends on the landscape: Heterogeneous, mountain, town


Radiance (shadows, slopes effects...)


Corrected reflectance with ICARE@ONERA

Limitations due to the transparency of the tree (PhD K.Adeline, 2013), see also unmixing in urban area, PhD I. Meganem, 2012)

Correction atmosphérique dans le MWIR et LWIR

Objectif:

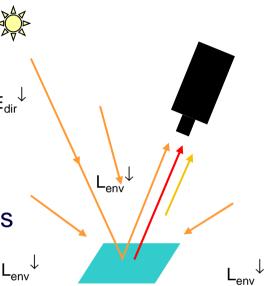
 A partir d'une mesure d'un élément de scène dans le domaine infrarouge, on désire estimer ses propriétés optiques : émissivité, réflectance et la température de surface

Intérêts :

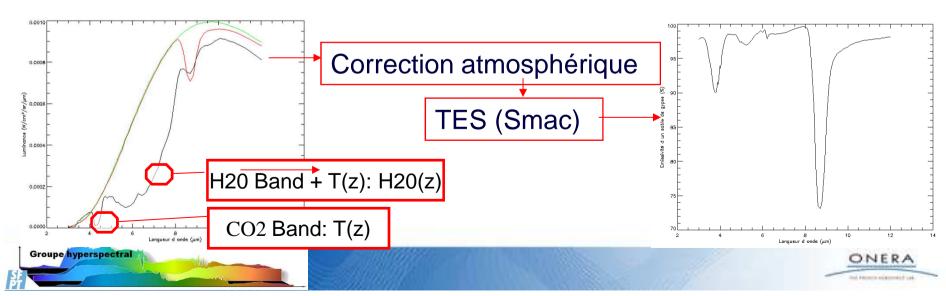
- Accéder à la signature spectrale des matériaux : détection, discrimination, classification
- Accéder à une meilleure estimation de la température de surface : détection, discrimination
- Problème général simplifié (on néglige l'environnement):
 - Mesure radiométrique = luminance fonction de l'émissivité et de la température soit :

$$L = \varepsilon . L_{CN}(T)$$

- Soit une mesure L et 2 inconnues : ε et T
- Les méthodes TES (Temperature Emissivity Separation) ont pour but de résoudre ce problème sous déterminé pour estimer ces 2 inconnues.


Correction atmosphérique dans le MWIR et LWIR (2) : [Lesage, 2008], [Kanani, 2006]

$$L(v) = \varepsilon(v).B(v,T).t(v) + L_{atm}^{\uparrow}$$

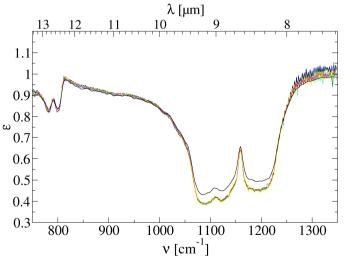

- + brdf(θ s, φ s, θ v, φ v). E_{dir} \downarrow (θ s, φ s).t(v)
- + t(v). $\int brdf(\theta i, \phi i, \theta v, \phi v) L_{env} \downarrow (\theta i, \phi i) d\Omega_i$

N mesures L(v)

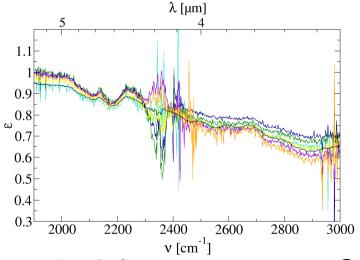
M>N inconnues: PO, T, composantes atmosphériques

Principe général de l'algorithme

Correction atmosphérique dans le MWIR et LWIR (3) : méthode TES « Spectral Smoothness and Continuity» (SMAC)


Principe: trouver la solution qui maximise la régularité de l'émissivité spectrale

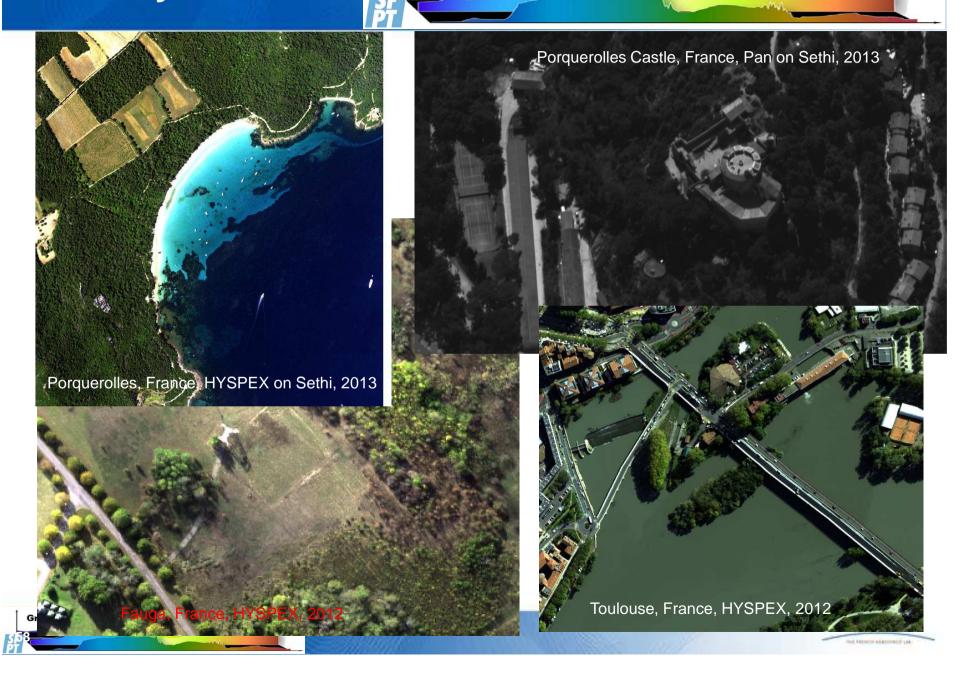
Hypothèse : un spectre d'émissivité est lentement variable devant un spectre atmosphérique


Estimation des composantes radiatives atmosphériques : Références Résolution : minimisation de $Sm(T) = \sum_{r=1}^{\infty} \frac{\partial^2 \mathcal{E}(v,T)}{\partial v^2}$ avec $\mathcal{E}(v,T) = \frac{L_{mes}(v) - E^{\downarrow}(v)}{L_{mes}(v) - E^{\downarrow}(v)}$ $Sm(T) = \sum_{i=1,N} \left| \frac{\partial^2 \varepsilon(v, 1)}{\partial v^2} \right|$

Technique numérique employée : itérative multi-résolution

Avantages : très rapide en temps de calcul, méthode très robuste, convergence très bien définie

Perfo/labo~0.021+-0.014@4cm-1


Perfo/labo~0.015+-0.02@4cm⁻¹

Thank you ...

