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Outline

Menu of the day

1 Introduction
The image processing chain
Current challenges

2 Feature extraction from remote sensing images
Spatial feature extraction
Spectral feature extraction

3 Supervised remote sensing image classification
Introduction to supervised image classification
Contextual information
Multisource image fusionwith LiDAR data
Prior knowledge and invariances
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Processing chain Challenges Summary

Part 1: Introduction to hyperspectral image processing
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Processing chain Challenges Summary

A standard image processing chain:
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Many steps and by-products from signal/image acquisition to the product

Transmission −→ Preprocessing −→ Processing

A wide diversity of problems and dedicated tools
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Processing chain Challenges Summary

1 Select best features (channels, spatial) that
describe the problem (classification, retrieval)

2 Extract (lin/nonlin) combinations of spectral
channels that best describe the problem

3 Combine panchromatic and optical bands to
improve products

4 Automatically find groups of pixels in the
image (for screening, detection)

5 Estimate geo-bio-physical parameters and
variables (temperature, LAI, etc) from spectra

6 Estimate the spectral components (pure
pixels, endmembers) in a ‘mixed’ pixel

7 Compress images for storage and transmission,
while keeping most of the information

8 Remove noise and distortions due to
acquisition (sun glint) or transmission (vertical
stripes)

9 Assign semantic classes to objects (pixels,
patches, regions) in the scene
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Processing chain Challenges Summary
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Processing chain Challenges Summary

Characteristics of hyperspectral data:

High spectral resolution → moderate spatial resolutions (mixed pixels,
subpixel targets)

High dimensional data: multi-temporal, multi-angular and multi-source
fusion

Non-linear and non-Gaussian feature relations

Few supervised (labeled) information is available (high cost)

Tons of data to process in (near) real-time

Green

b
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e
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Processing chain Challenges Summary

We will live at the intersection:

Remote
Sensing

Image 
Processing

Computer
Vision

Signal
Processing

Machine
Learning
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Intro Spatial / contextual Spectral Summary

Part 2: Feature extraction from hyperspectral images
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Intro Spatial / contextual Spectral Summary

Why feature extraction?

Extracting features from remote sensing images is essential to:

Compress information for storage/transmission

Reduce (spatial and spectral) redundancy

Permutation of map coordinates

Same accuracy of output

Spectral Classification Spectral Classification

Make image processing algorithms more robust (to noise, ]labels vs. dim.)

Understand the underlying physical relations
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Intro Spatial / contextual Spectral Summary

Why feature extraction?

[Hughes69]
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Algorithms cannot deal with high-dim feature vectors efficiently

We require fast processing of few richer components

Many times the spectral information is not enough
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Intro Spatial / contextual Spectral Summary

Today we consider:

1 Spatial/contextual
Texture
Math morphology

2 Spectral: extract features that enforce properties of the data we like
Compression: PCA
Atmospheric compensation: KEMA
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Intro Spatial / contextual Spectral Summary

Why spatio / spectral features

Relying only on spectral information, we disregard the spatial context of the
pixels.

Permutation of map coordinates

Same accuracy of output

Spectral Classification Spectral Classification
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Intro Spatial / contextual Spectral Summary

Going contextual

Let’s consider some assumptions

1. Images are intrinsically spatial, not just ‘data’
>> to use the position information makes sense.

2. Objects are sharply separated
>> contrast can be used to avoid oversmoothing.

3. Classes (∼ objects) tend to be spatially consistent
>> neighboring pixels tend to belong to the same class.
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Intro Spatial / contextual Spectral Summary

1. Images are spatial random fields

Gray values vary smoothly in
the spatial domain

They are NOT independent wrt
their neighbors
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Intro Spatial / contextual Spectral Summary

2. Objects are separated by high contrast regions

High gradient is a sharp
boundary

What is beyond is probably
another object

18/91



Intro Spatial / contextual Spectral Summary

Going contextual

Let’s consider some assumptions

1 Images are intrinsically spatial, not just ‘data’
[1.] >> to use the position information makes sense.

2. Objects are sharply separated
>> contrast can be used to avoid oversmoothing.

3. Classes (∼ objects) tend to be spatially consistent
>> neighboring pixels tend to belong to the same class.
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Intro Spatial / contextual Spectral Summary

3. Classes are also generally smooth

Neighboring pixels tend to
share the same class

Size and type of the relation
depend on many factors
(resolution, type of class, ...)
> prior information
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Intro Spatial / contextual Spectral Summary

Going contextual

Summing up:

1. Images are intrinsically spatial, not just ‘data’

2. Objects are sharply separated

3. Classes (∼ objects) tend to be spatially consistent

It is time to meet the pixels’ neighbors!
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Intro Spatial / contextual Spectral Summary

We can act at the feature level

We generate relevant filters

(opt.) We select the good ones

We classify

Classi�er

(e.g. LDA)

Image Product

Contextual !lters

Contrast-aware !lters
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Intro Spatial / contextual Spectral Summary

Filters

Signal modifications that smooth or enhance edges.

Morphological opening and closing Morphological reconstruction

Attribute filtering

Physics-inspired indices: NDVI, Red-edge, NDWI, ...
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Intro Spatial / contextual Spectral Summary

Erosion: “Replace pixel with the minimum surrounding pixel over SE.”
>> se = strel(’disk’,3); O = imerode(I,se);

Erosion, disk 3x3

Darker features than the surroundings are enlarged

Brighter features than the surroundings shrink
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Intro Spatial / contextual Spectral Summary

Dilation: “Replace pixel with the maximum surrounding pixel over SE.”
>> se = strel(’disk’,3); O = imdilate(I,se);

Dilation, disk 3x3

Brighter features than the surroundings are enlarged

Darker features than the surroundings shrink
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Intro Spatial / contextual Spectral Summary

Opening: “Erosion followed by dilation”
>> se = strel(’disk’,3); O = imopen(I,se);

Opening, disk 3x3

Brighter features than the surroundings and smaller than the SE disappear

Other features (dark, or bright and large) remain unchanged
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Intro Spatial / contextual Spectral Summary

Closing: “Dilation followed by erosion.”
>> se = strel(’disk’,3); C = imclose(I,se);

Closing, disk 3x3

Darker features than the surroundings and smaller than the SE disappear

Other features (bright, or dark and large) remain unchanged
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Intro Spatial / contextual Spectral Summary

Morphological profile: “Openings and closings with increasing SE”
>> se = strel(’diamond’,5); repeat opening-closing operations;

MP, Close 1 MP, Close 2 MP, Close 3

Image

MP, Open 5 MP, Open 6 MP, Open 7

Pixels turn into a sequential analysis of fine-to-coarse relations

Useful as a feature vector for processing (e.g. classification)
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Intro Spatial / contextual Spectral Summary

Local entropy: “Replace a pixel with the entropy value of the neighborhood”
>> H = entropyfilt(I/max(I(:)));

Local entropy, 9x9 window

Useful for edge detection

Useful for saliency and detection of anomalies
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Intro Spatial / contextual Spectral Summary

Spectral feature extraction

Ok, now we know how to extract filters. But on which bands?

In hyperspectral images we have hundreds to thousands of features!

Extracting filters for each would lead to millions of redundant features
(the bands are collinear)

↑
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↓
And classifiers will be less accurate (Hughes phenomenon)

And slower...

... A solution can be found in ...

30/91



Intro Spatial / contextual Spectral Summary

Dimensionality reduction (a.k.a feature extraction)

We want to recombine information of the image into some features that
show some properties of interest for us

Most of the spectral feature extractors are based on multivariate analysis:
“project data onto a subspace that maximizes explained variance,
minimize classification error, etc.”

Today we consider two problems:

1 Compressing the information: principal component analysis (PCA)

2 Making classes more similar: kernel manifold alignment (KEMA)
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Intro Spatial / contextual Spectral Summary

Principal component analysis (PCA)

“Find projections maximizing the variance of the data:”

PCA: maximize: Tr{(XU)>(XU)} = Tr{U>Cxx U}
subject to: U>U = I

The Matlab PCA code:

>> C = cov(X);
>> [U L] = eigs(C,d);
>> Xtest projected = Xtest*U;
>> Xtest projected = Xtest*U(:,1:np);

Pros & cons:√
Simplicity√
Easy to understand√
Leads to convex optimization problems

× Unsuitable for non-linear problems
× More dimensions than points?
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Intro Spatial / contextual Spectral Summary

An Example: Pavia data (with video!)
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Intro Spatial / contextual Spectral Summary

Using feature extraction for other objectives

PCA compacts information
It is useful if you want to reduce the dimensionality and have informative
features to extract spatial indices
It has nothing to do with classification: the features are not discriminative
Other feature extractors are discriminative: PLS, OPLS
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Intro Spatial / contextual Spectral Summary

Orthonormalized PLS (OPLS)

“OPLS chooses the projection U that minimizes the MSE error using a
linear regression:”

OPLS: find: U = arg min{‖Y − (XU)W‖2
F}

where: W = (XU)†Y = ((XU)>XU)−1XUY

The Matlab OPLS code

>> [U,D] = eig((X’*Y)*(Y’*X),X’*X);
>> Xtest projected = Xtest*U;
>> Xtest projected = Xtest*U(:,1:np);
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Intro Spatial / contextual Spectral Summary

Experimental comparison

Data:
AVIRIS image taken over NW Indiana’s Indian Pine test site in June 1992
145× 145 image size, 220 features (bands), 16 land cover classes
80% for training and 20% for testing
Classifier: linear classifier on top of different number of features

Results:
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PCA
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CCA
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PLS2 (61.5%)

OPLS (68.2%) KOPLS (83.3%)

RGB composite

Supervised feature extraction often better than unsupervised
Higher accuracies lead to smoother maps
kOPLS excels in performance, needs few components
kOPLS reduce false alarm rates in large homogeneous vegetation areas
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Intro Spatial / contextual Spectral Summary

Using feature extraction for other objectives: shadow compensation

What if our data show undesired spectral effects?

PCA compacts information

PLS / OPLS / ... provide discriminative bands

can we define projections that perform automatic relative normalization?

like an histogram matching between images, or an automatic atmospheric
correction
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Intro Spatial / contextual Spectral Summary

Using feature extraction for other objectives: shadow compensation

We have one hyperspectral image form CASI, a part has a strong shadow

Our ground reference :

0 - Unclassified
1 - Healthy grass

2 - Stressed grass
3 - Synthetic grass

4 - Trees
5 - Soil

6 - Water
7 - Residential

8 - Commercial
9 - Road

10 - Highway
11 - Railway

12 - Parking Lot 1
13 - Parking Lot 2

14 - Tennis Court
15 - Running Track

The train ground (↓ green) truth is only on lit pixels

The test ground truth (↓ red) is a mixture of lit pixels and under shadow
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Intro Spatial / contextual Spectral Summary

Using feature extraction for other objectives: shadow compensation

We have one hyperspectral image form CASI

A classifier will do something like that (OA: 71%, 4% under the shadow):

If we add LiDAR and spatial filter (OA: 85%, 23% under the shadow):
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Intro Spatial / contextual Spectral Summary

Kernel Manifold Alignment

The Kernel Manifold Alignment registers images spectrally. It searches for
projections that

A: Maintain the original spectral neighoborhood relationships (keep the
reflectance structures)

B: Pull samples of the same class close

C: Push samples of different classes apart

Ref. Tuia and Camps Valls: Kernel manifold alignment for domain adaptation.
PLoS One, 2016.

CODE: https://github.com/dtuia/KEMA
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Intro Spatial / contextual Spectral Summary

Kernel Manifold Alignment (intuition)
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Intro Spatial / contextual Spectral Summary

Using feature extraction for other objectives: shadow compensation

We register spectrally the illuminated and shadowed parts

This is how the three first projections look like

A classifier after projection (OA: 83.8%, 70% under the shadow):

If we add LiDAR and spatial filter (OA: 94.3%, 91% under the shadow):
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Intro Spatial / contextual Spectral Summary

Feature extraction: summary

Extracting features from remote sensing images is essential to:
Compress information for storage/transmission
Reduce (spatial and spectral) redundancy
Visualize data characteristics

Spectral features rely either on physical prior knowledge or statistical
techniques that optimize a sensible criterion

Spatial features rely on image processing operations building on the
classical smoothness assumption in the image space or detect edges

All in all, they always make the problem better posed, so use them!
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Intro Supervised Contextual LiDAR Invariances Summary

Part 3: Supervised hyperspectral image classification
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Intro Supervised Contextual LiDAR Invariances Summary

In a nutshell

From here To here

Gray values, f (light) Limited number of classes
Rb Z

[Tuia et al, Classification of very high spatial resolution imagery using mathematical morphology and support vector machines, IEEE
TGRS, 2009]
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Intro Supervised Contextual LiDAR Invariances Summary

Did you say classification?

Need for generalization of images for:

land cover / coastal monitoring

post catastrophe assessment

military applications

population movements, urban growth, policy making

Need for automatic routines because

the human brain is excellent at pattern recognition

for a computer,
- a pixel is just a stack of values (one per feature)
- the notion of object does not exist a priori.
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Intro Supervised Contextual LiDAR Invariances Summary

Statistical classifiers have been readily applied to the problem:

Parametric

Assume a particular
density distribution
LDA, GMM

Non-parametric

No assumption about
the data distribution
k-NN, NNETS, TREES, SVM

Supervised

Need labeled
input-output
pairs
LDA, k-NN, TREES,
SVM

Unsupervised

No need labels
k-means, EM-GMM,
SOM

Semisupervised

Use both
labeled and
unlabeled data
Laplacian SVM,
TSVM, graphs

One-class

Interest in
detecting just
one class
SAM, OSP, RX,
OC-SVM

Not too much success in parametric classifiers, as some assumptions break

Currently, nonparametric classifiers and committees of experts excel!

k-NN: good compromise between accuracy and computational cost

Support vector machines (SVM) typically outperform the rest
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Intro Supervised Contextual LiDAR Invariances Summary

Classifiers:

Linear discriminant analysis (linear, quadratic, Mahalanobis)

k-Nearest neighbors (KNN)

Random Forests (RF)

Support Vector Machines (SVM)
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Intro Supervised Contextual LiDAR Invariances Summary

Linear discriminant analysis (LDA): “Fits a Gaussian to each class data”

Linear discriminant analysis (‘linear’): Fit a multivariate Gaussian to each
group/class through a joint covariance matrix

>> yp=classify(Xtest,Xtrain,Ytrain,’linear’);

Linear discriminant analysis (‘quadratic’): Fit a multivariate Gaussian to
each group/class through a class-dependent covariance matrix

>> yp=classify(Xtest,Xtrain,Ytrain,’quadratic’);
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Intro Supervised Contextual LiDAR Invariances Summary

k nearest neightbor (k-NN)

non-parametric memory-based (lazy) classifier

assigns the test label from the closest training point(s)

we can play around with the notion of distance (e.g. Euclidean, SAM, etc.)

k-NN is a rather slow method with many samples and high k

k = 1 use to work in real applications!

>> mdl = fitcknn(Xtrain,Ytrain,’NumNeighbors’,1);

>> yp = predict(mdl,Xtest);
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Intro Supervised Contextual LiDAR Invariances Summary

Random Forests (RF)

Trains a set of Ntrees decision trees built on subsets of data and features
Final prediction is a vote over the trees responses
More trees is better (more independence), but also slower.
More depth of the trees tends to overfit.

>> RF = TreeBagger(NTrees,Xtrain,Ytrain);

>> [yp,scores] =predict(RF,Xtest);
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Intro Supervised Contextual LiDAR Invariances Summary

Support Vector Machines (SVM)

Support Vector Machines (SVM): “non-parametric kernel method that fits
an optimal linear hyperplane separating the classes in a higher dimensional
representation (feature) space”
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Data: Given n examples xi ∈ RB and yi ∈ {−1,+1} (classes)

Objective: Linear classifier in Hilbert space, ŷ = sign(w>φ(x) + b).

 

y =+1i

y =-1i
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Several solutions exist!

Objective: Define the optimal one (w, b)

 

y =+1i

y =-1i
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Intuitively there’s an optimal one!

Objective: Define the optimal one (w, b)

 

w

y =+1i

y =-1i
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Maximize margin separation = minimize ‖w‖: minw

{
1

2
‖w‖2

}

 

w

y =+1i

y =-1i

||w||
2
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Errors must be also penalized! minw

{
1

2
‖w‖2 + C

∑
i ξi

}
xii

xj

 j

ξ

ξ

w

y =+1i

y =-1i
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ŷj = f (xj ) = sign(w>φ(xj ) + b) = sign

( n∑
i=1

αi yi 〈xj , xi 〉+ b

)
Instead of computing the exact position of the point w.r.t the hyperplane

We compute it relatively to the support vectors

Support vectors: the samples on the margin

 

y =+1i

y =-1i

?
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But this is only linear. How to solve this?

x1

x2
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2 possibilities

(x1)2

(x2)2

2(x1x2)

Build a nonlinear model (e.g. NN) Ask an old friend
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Original space X Feature space H

x1

x2

→ Project →

(x1)2

(x2)2

2(x1x2)

↓
Use linear model

↓

x1

x2

← Back in X ←

(x1)2

(x2)2

2(x1x2)
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But how?

The expression of the projecting function φ(x) can be complicated

There are infinitely many possible candidates

Trick: use samples in the original space, get the projected solution
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By using kernels

A kernel between two samples correspond to their similarity in a higher
dimensional space

K : x→ φ(x)

We evaluate the function on the input samples, and we get their similarity
in the projected one

K(x1, x2) = 〈φ(x1), φ(x2)〉
e.g squared polynomial kernel in 2D corresponds to a projection on a 3D
space

x ∈ R2 = [x1, x2]

φ(x)poly,2 ∈ R3 = [(x1)2,
√

x1x2, (x2)2]
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Support Vector Machines (SVM): “non-parametric kernel method that fits
an optimal linear hyperplane separating the classes in a higher dimensional
representation (feature) space”

ŷj = f (xj ) = sign(w>φ(xj ) + b) = sign

( n∑
i=1

αi yi K(xj , xi ) + b

)
The solution is sparse: only few examples xi with αi 6= 0 are important

Support vectors: define the margin and are misclassified examples

The solution is linear in the projected space, but nonlinear in the
original one
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Example: Spatial-spectral multispectral image classification

Multispectral image: 9 crop classes, Zürich, 2002.

Quickbird sensor: 4 bands + 22 spatial features (top/bottom hat).

Both spatial and spectral information is considered.

Accuracy and robustness with contextual information:
Training OA [%] Kappa

pixels LDA 1 Tree k-NN SVM NN LDA 1 Tree k-NN SVM NN

115
µ 72.93 71.00 75.69 83.37 77.37 0.67 0.65 0.70 0.80 0.72
σ (2.85) (2.97) (1.28) (2.40) (2.48) (0.03) (0.03) (0.02) (0.03) (0.03)

255
µ 77.23 73.47 80.53 85.91 80.61 0.72 0.68 0.76 0.83 0.76
σ (1.41) (1.64) (1.34) (1.94) (0.99) (0.02) (0.02) (0.02) (0.02) (0.01)

1155
µ 78.35 80.45 87.32 88.03 84.29 0.74 0.76 0.84 0.85 0.81
σ (0.69) (0.73) (0.63) (1.68) (1.77) (0.01) (0.01) (0.01) (0.02) (0.02)

2568
µ 78.61 81.59 87.26 87.17 85.10 0.74 0.77 0.84 0.84 0.82
σ (0.57) (0.89) (0.61) (0.85) (1.05) (0.01) (0.01) (0.01) (0.01) (0.01)
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Ground truth LDA (78.35, 0.74) Decision tree (80.45, 0.76)

k-NN (87.32, 0.84) SVM (88.03, 0.85) Neural net (84.29, 0.81)

SVM and k-NN detect all major structures of the image

McNemar’s test confirmed visual estimation of the quality

[Camps-Valls et al., Remote Sensing Image Processing, Morgan and Claypool, 2011]
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Image classification needs strong regularization:

SVM imposes regularization naturally by maximum margin

RF impose regularization naturally by the ensemble of weak learners

Advanced classification focuses on other forms of regularization:

Reduce dimensionality via feature selection and extraction [+Before+]
Include synthetically generated data encodes invariance properties [+Next+]
Impose spatial homogeneity of images: include spatial information [+Next+]
Include information contained in unlabeled samples
Include multisource data: SAR, LiDAR [+Next+]
Include ancillary information from expert’s knowledge (VIs, ecosystems
maps, climate regions, etc)
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How to integrate multi-source information?

Spatial features

Textural features

Time-varying features

Multi-sensor features

Multi-angular features

Optical,  xi
w Radar,  xi

r Contextual,  xi
c Spatial,  xi

s
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Stacked approach

Stacking features that characterize a pixel:

xi ← [xωi , x
c
i , x

r
i , x

ρ
i , x

s
i , x

t
i , ...]

Compute matrix K and solve an SVM with the new samples xi .

SVM

Stacking features in the
original input space, xi

Classification
yi

K(xi,xj)

Problems:
1 Dimensionality of the samples is increased extraordinarily!
2 Cross-relationships among features are not taken into account.
3 This would be impractical for neural networks, for example.
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Kernel-based spatial-spectral HSI classification

Some properties of kernel methods (and SVM):

K(xi , xj ) = K1(xi , xj ) + K2(xi , xj )
K(xi , xj ) = K1(xi , xj ) · K2(xi , xj )
K(xi , xj ) = ηK1(xi , xj ), η > 0

Stacking features in the kernel space implies direct sum of kernels

SVM

Classification
yi

K(xi
w, xj

w) K(xi
r, xj

r) K(xi
c, xj

c) K(xi
s, xj

s)

K(xi, xj)

[Tuia et al., Learning relevant image features with multiple kernels classification, IEEE TGRS, 2010]
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Combine advanced spatial features and composite SVM

RGB GT SVM EMAP EMAP+CSVM EMAP+GCSVM
ω s ω + s ω + s

(81.01) (89.89) (97.80) (98.09)

ROSIS-03 Pavia University area data set (103 spectral channels and
spatial resolution 1.3m), 9 classes

Spatial components:

Benediktson11 Extended Morphological Profiles (EMAP)
CampsValls06 Cross-kernels composite SVM (CSVM)

Li13 Generalized composite kernels (GCSVM)

[Li et al., Generalized Composite Kernel Framework for Hyperspectral Image Classification, TGRS 2013]

76/91



Intro Supervised Contextual LiDAR Invariances Summary

GRSS DF-TC competition 2013:

HSI from CASI1500 sensor (144 bands, 380–1050 nm)

LiDAR-derived digital surface model (DSM), spatial res. 2.5 m

15 classes, challenging problem, diversity of classes

DSM represents elevation (in [m]) above sea level (Geoid 2012 A model)

Note a large cloud shadow, validation samples are also there!

Classes HSI + LiDAR-derived DSM

Credits: Figures from Debes, et al. IEEE-JSTARS 2013. Special thanks to Dr. Saurabh Prasad @ University of Houston, USA.

Data freely available on http://hyperspectral.ee.uh.edu/?page id=459
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Setup

Training on 2’832 samples

Testing on spatially separated 12’197 samples

Classifier: SVM, RBF kernel

Max of 276 features:
144 spectral bands (shadow corrected)
64 morphological filters from HSI (1st PCA)
1 DSM from LiDAR
64 morphological filters from LiDAR
3 variations of NDVI index

8 experiments, acocunting for the different features sets

Post processing: majority vote on

5 independent runs
5× 5 moving window
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Results

[Matasci et al., Hyperspectral and LiDAR data fusion for high resolution urban land cover/land use classification,

Swiss Geoscience Meeting, 2013]
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Results (exp #8)

grass_healthy
grass_stressed
grass_synthetic
tree
soil

water
residential
commercial
road
highway

railway
parking_lot_empty
parking_lot_vehicles
tennis_court
running_track

[Matasci et al., Hyperspectral and LiDAR data fusion for high resolution urban land cover/land use classification,

Swiss Geoscience Meeting, 2013]
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But we are still tributary of training specificities

There are physical facts that we know and we want to be invariant to!

e.g. rotation, shadowing, scaling of objects

?

The example assumes invariance to horizontal transformations

Given the training data, the point ? is hard to classify

Modify the SVM to incorporate prior knowledge
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?

Step 1 Train a SVM and find the SVs
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?

Step 1 Train a SVM and find the SVs

Step 2 VSVs: perturbate SVs to which the solution should be invariant
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Step 1 Train a SVM and find the SVs

Step 2 VSVs: perturbate SVs to which the solution should be invariant

Step 3 Train a SVM with both SVs and VSVs
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Example: encoding invariance to rotations:

Quickbird image + 18
spatial features

Size: 329× 347 pixels

9 classes

VSVM encodes
invariance to rotation!

Cl
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s
1

Cl
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s
2
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s
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SVs SVs rotated

RGB GT SVM (76.14, 0.73) VSVM (83.15, 0.80)

Both classifiers show high classification scores
VSVM improves classification score over +7%
VSVM is however more computationally demanding

[Izquierdo-Verediguer et al., Encoding Invariances in Remote Sensing Image Classification With SVM, GRSL 2013]
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Summary for classification

Multi- and Hyperspectral image classification are challenging problems

High dimensional feature spaces scarcely populated!

Statistical approaches:
Supervised algorithms
Semisupervised algorithms

Kernel methods are the current state-of-the-art classifiers

More info in the classifiers implies improved signal model
More samples (by sampling or synthesizing)
More meaningful features
Multitemporal information
More concurrent sensors
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Summary

Today, we introduced machine learning for remote sensing image
processing

We focused on two major tasks: image classification and feature
extraction

We reviewed the basis and provided some MATLAB scripts to try them
out.

Need more resources?
- Camps-Valls et al. ‘Advances in Hyperspectral Image Classification’, IEEE

Signal Processing Magazine, 31: 45-54, 2014.
- Gomez-Chova et al., ‘Multimodal Classification of Remote Sensing Images:

A Review and Future Directions’, Proceedings of the IEEE, 103, 1560-1584,
2015.
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Some relevant books:
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Need data?

The Image Analysis and Data Fusion Technical Committee of the IEEE hosts a
yearly Data Fusion Contest. Data and info can be found on the IADF website.
http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/

>> 2013: LiDAR point clouds + hyperspectral aerial data
A

>> 2014: thermal hyperspectral + RGB VHR data
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Thank you for listening!
devis.tuia@geo.uzh.ch

Greatest thanks to Gustau Camps-Valls, with whom we prepared the slides

Supported by:

SWISS NATIONAL SCIENCE FOUNDATION

Swiss National Science Foundation, project no. PBLAP2- 127713
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