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Outline

Part 1 - Brief overview of hyperspectral imaging in remote sensing

The observation model (direct or forward problem)

Degradation mechanisms (spatial blur and noise)

Characterization of hyperspectral images (geometrical and statistical)

Inverse problems in hyperspectral imaging (denoising, sharpening, unmixing)

Part 2 - Inverse problems in a nutshell

Part 3 - Denoising, sharpening, and unmixing
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Hyperspectral imaging: motivation

Measuring the radiation arriving the sensor with high spectral resolution over a
su�ciently broad spectral band such that the acquired spectrum can be used
to uniquely characterize and identify any given material
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Hyperspectral imaging: motivation
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Remote sensing: basics

Radiance versus re�ectance

E � Irradiance (W/m2) L(λ) = 1
πE(λ)ρ(λ)

ρ � Re�ectance
L � Radiance (W/Sr/m2)
λ � Wavelength (µm)
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Remote sensing: the in�uence of atmosphere
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Spatial and spectral resolution trade-o�s

The signal-to-ratio (SNR) associated with the Poissonian noise in a hyperspectral
imaging system is given by ([Shaw & Burke 2003])

SNR ∝ ∆2

ACR ∗R

where ∆ is the spatial resolution, R is the number of bands, and ACR is the area
coverage rate.

For the same SNR and ACR, we have

∆(R)

∆(1)
=
√
R

In conclusion: Hyperspectral images tend to have low spatial resolution
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Acquisition instruments
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Acquisition instruments
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Acquisition instruments

Large data volumes
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Contributions to the radiance measured by the sensor

Rays

1 Sunlight

2 Skylight

3 Adjacency e�ect

4 Surface scattering

5 Atmosphere
scattering

6 Path radiance

L(λ) = a(λ)ρ(λ) + b(λ)

a and b are complex functions of: viewing angles, sun irradiance, atmosphere
transmitance and re�ectance, and surface refectance
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Processing �ow of hyperspectral data cubes
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Observation model in RS hyperspectral imaging

X ∈ RR×N denotes a hyperspectral re�ectance image organized in a matrix with
R spectral bands and N pixels per band

X =

x
1

...
xR

(R band images)

X = [x1, . . . ,xN ] (N spectral vectors)

x = vec(X) := [xT1 , . . . ,x
T
N ]T ∈ Rn, n = RN

Linear observation model with additive noise

y = Ax + n

where y,n ∈ Rm, n is an additive perturbation, and the matrix A ∈ Rm×n

accounts for the spectral and spatial sensor blurring and downsampling
mechanisms
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Linear observation model

Often the action of A is separable with respect to the columns and rows of X:

y = Ax + n ⇔ Y = AλXAx + N

where

Y,N ∈ RL×M and y = vec(Y)

A = AT
x ⊗Aλ (⊗ denotes kronecker product)

Aλ ∈ RL×R acts on the rows (spectral domain) of X

Ax ∈ RN×M acts on the columns (spatial domain) of X

Unknowns:
n = RN

Observations:
m = LM
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Degradation mechanisms: noise

The noise is dominated by two components: y = P(Ax) + n

1 Non-additive Poissonian noise due to the photon counting process (P(Ax))
Recall: y ∼ P(x)

P (y = k) =
e−xxk

k!
, E[y] = x, Var[y] = x, SNR =

E2[y]

Var[y]
= x

2 Additive Gaussian noise due to electronic circuits (n)

Accurate statistical modeling of the noise having into account the Gaussian
and the Poissonian components is a challenging task
([B-D & Nascimento, 08], [Acito et al., 11], [Jezierska, 14], [Chouzenoux et al., 15])

Atmospheric correction process introduces further complications

In this tutorial, we often assume that the noise is Gaussian additive pixelwise
independent with band-dependent variance
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Example of Gaussian and Poissonian noise (ROSIS, band 60)

Gaussian Noise:
y = x + n, σ = 0.03

Poissonian Noise:
y = P(γx), γ = 100

Anscombe transform:√
y + a '

√
γx + a+ w
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Example: noise estimation

HySime: dim = 20
([B-D, & Nascimento, 08])
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Characterization of the hyperspectral images

Hyperspectral data cubes are highly correlated in the spectral-spatial domain

⇒ Live in low (or in the union of low) dimensional manifolds or subspaces
([B-D & Nascimento, 08], [B-D et al. 12], [Ma et al., 14], [Heylen et al. 14])

X = EZ E ∈ RR×p p� R

⇒ Sparsely represented by 3D wavelets (multiresolution representations)
([Rasti et al. , 12], [Fowler & Rucker, 07]

w = Wx ∈ Rd (wavelet coe�cients) ‖w‖0 � d (‖w‖0 = {|wi : wi 6= 0|})

⇒ Exhibit self-similarity, thus suited to non-local dictionary based techniques
([Castrodad et al., 11], [Elad et al., 06])

Patch(X) = Dα α is parse
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Example of subspace identi�cation [B-D & Nascimento, 08]

Pavia University (ROSIS,
R = 103, N = 610× 340)
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Example of 3D wavelet decomposition

Pavia University
(ROSIS, R = 103,
N = 610× 340)

Reconstruction from 3%
of the 3D wavelet
coe�cients
PSNR = 35 dB
PSNR = 32 dB (1%)

Coe�cients of the dual-tree 3D
complex wavelets [Kingsbury, 02])
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Inverse problems in hyperspectral imaging

Denoising

Observation model: Y = X + N

X,N ∈ RR×N

N is Gaussian with matrix normal distribution: N ∼MN (0R×N ,Cλ,Cx)
(this is equivalent to say that vec(N) ∼ N (0RN ,Cx ⊗Cλ))

Objective: estimate X

Unmixing (linear mixing model - LMM)

Observation model: Y = ES + N

E ∈ Rp×N (endmember matrix)

S ∈ Rp×N (abundance matrix)

N ∼MN (0R×N ,Cλ,Cx)

Objective: estimate E,S
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Matrix normal distribution

Let X ∈ RR×N . A matrix normal distribution

X ∼MN (M,Cλ,Cx)

is a generalization of the multivariate normal distribution if an only if

vec(X) ∼ N (vec(M),Cx ⊗Cλ)

This implies that

p(X|M,Cλ,Cx) =
exp

(
1
2 tr
[
C−1
x (X−M)TC−1

λ (X−M)
])

(2π)RN |Cλ|R/2|Cx|N/2

M := E[X]

Cλ - among-row covariance

Cx - among-column covariance
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Inverse problems in hyperspectral imaging

Hyperspectral sharpening (deblurring, superresolution, fusion)

Observation model: Yh = XAxM + Nh Ym = AλX + Nm

X ∈ RR×N

Yh ∈ RR×M - observed hyperspectral image
(M = N/d2 - d is the downsampling factor)

Ym ∈ RL×N - observed multispectral image

Ax ∈ RN×N - (usually a convolution)

Aλ ∈ RL×R - (spectral responses of the MS sensor )

M ∈ RN×M - (downsamplimg matrix)

Nh ∼MN (0R×M ,Chλ,Chx)

Nm ∼MN (0L×N ,Cmλ,Cmx)

Objective: estimate X
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Inverse problems in hyperspectral imaging

Hyperspectral image compressive sensing

Observation model: y = Ax + n

x ∈ Rn, n = RN

y ∈ Rm, m� n

A ∈ Rm×n - measurement matrix (often A = AT
x ⊗Aλ)

n ∼ N (0m,Cn)

Objective: estimate x (equivalently, X = vec−1(x))
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