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Direct/Inverse problems

Example

Direct problem: the computation of the trajectories of bodies from the knowledge
of the forces

Inverse problem: determination of the forces from the knowledge of the trajectories

Newton solved the �rst direct/inverse problem: the determintion of the
gravitation force from the Kepler laws describing the trajectories of planets
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Example: a linear time invariant (LTI) system

Direct problem: y(t) = x ? h(t) =

∫
x(t′)h(t− t′)dt′

Fourier domain: ỹ(ω) = h̃(ω)x̃(ω) ⇒ h̃(ω) = (1 + jωτ)−1, τ = RC

Inverse problem x̃(ω) = ỹ(ω)/h(ω̃)

Source or di�culties: h̃−1 is unbounded: |h̃−1(ω)| → ∞ as |ω| → ∞

⇒ A perturbation on ỹ leads to a perturbation on x̃ given by

∆̃x(ω) = ∆̃y(ω)(1 + jωτ)
high frequencies of the
perturbation are ampli�ed,
degrading the estimate of x̃

J. Bioucas Dias (IT, IST, ULisboa) Part 1 - IPs in Hyperspectral Imaging SFPT-GH, May, 2016 4 / 33



Classes of direct (forward) problems: linear operators

Linear operators in Euclidean spaces

y = Ax + n, x ∈ Rn, y,n ∈ Rm, A ∈ Rm×n

Applications:

image denoising, deconvolution, deblurring
X-ray tomography, MR imaging, radar imaging
imaging compressive sensing
image deblurring, superresolution, fusion
hyperspectral unmixing
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Classes of direct problems: statistical observation models

Examples: (x ∈ Rn, y ∈ Rm, A ∈ Rm×n)

L(Ax) = − log pY |X(y|x) where L(z) ≡
∑m
i=1 ξ(zi, yi)

Gaussian observations: ξG(z, y) = 1
2 (z − y)2

(widely used in image restoration)

Poissonian observations: ξP(z, y) = z + ιR+(z)− y log(z+)
(noise in photo-electric conversion, SPET (single photon emission
tomography, PET (positron emission tomography))

Multiplicative noise: ξM(z, y) = L(z + ey−z)
(radar, sonar)
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Examples
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Examples
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Example: hyperspectral pansharpening
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Example: hyperspectral compressive sensing
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Well-posed/ill-posed inverse problems [Hadamard, 1923]

De�nition

Let A : X → Y be a (possible nonlinear) operator

The inverse problem of solving A(x) = y is well-posed in the Hadamard sense if:

1) A solution exists for any y in the observed data space

2) The solution is unique

3) The inverse mapping y 7→ x is continuous

An inverse problem that is not well-posed is termed ill-posed

The operator A of an inverse well/ill-posed problem is termed well/ill-posed
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Ill-conditioned inverse problems

Many well-posed inverse problems are ill-conditioned, in the sense that

‖∆x‖
‖x‖

� ‖∆y‖
‖y‖

for linear operators
‖∆x‖
‖x‖

≤ cond(A)
‖∆y‖
‖y‖

(tight bound)

cond(A) ≡ ‖A‖ ‖A−1‖
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An ill-conditioned IP: discrete deconvolution

Let x,y,n ∈ Rn such that y = Ax + n, where A ∈ Rn×n represents a cyclic
convolution with a Gaussian convolution kernel.
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An ill-conditioned IP: 1D discrete deconvolution

Eigen-decomposition of cyclic matrices

Avk = λkvk ⇒ A = VΛV∗, V∗V = VV∗ = I, (unitary)

V→ eigenvector (Fourier) matrix, Λ→ eigenvalue matrix (diagonal) matrix

A =
∑n
k=1 λkvkv

∗
k, (λk 6= 0, k = 1, . . . , n) ⇒ A−1 =

n∑
k=1

1

λk
vkv

∗
k

y = Ax + n

x̂ = A−1y
=

x +
∑n
k=1

(v∗kn)
λk

vk
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Example: 1D discrete deconvolution

Regularization by �ltering

x̂α =

n∑
k=1

λ−1k wα(|λk|)vk(v∗ky)

such that
1 wα(|λ|)λ−1 → 0 as λ→ 0
2 The larger eigenvalues are retained

Wiener �lter

wα(|λ|) =
|λ|2

|λ|2 + α
x̂α =

n∑
k=1

λ∗k
|λk|2 + α

vk(v∗ky)

Equivalent variational formulation (Tikhonov regularization)

x̂α = arg min
x
‖y −Ax‖22 + α‖x‖22

= (A∗A + αI)−1A∗y
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Example: 1D Discrete deconvolution
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Example: 2D Discrete deconvolution

convolution kernel h: uniform 9× 9, n ∼ N (0, σ2 = 0.562)

cond(A) = 2.2× 105, SNR=
var(y)

σ2
= 40dB

x y = Ax + n
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Example: 2D Discrete deconvolution
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Curing Ill-posed/Ill-conditioned inverse problems

Golden rule for solving ill-posed/ill-conditioned inverse problems

Search for solutions which are:

1 compatible with the observed data

2 satisfy additional constraints (a priori or prior information) coming from the
(physics) problem

Frameworks to solve inverse problems

Bayesian inference: the causes are inferred by minimizing the Bayesian risk

Regularization theory: the causes are inferred by minimizing a cost function
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The Bayesian philosophy

Bayesian Inference

Probabilities describe degrees of belief, not limiting relative frequencies

We can make probability statements about parameters, even though they are
�xed quantities

Any inference should be based on the posterior

pX|Y (x|y) =
pY |X(y|x)pX(x)

pY (y)

where pX(x) is the prior (or a priori) distribution that expresses our belief
about x before we see any data and pY (y) is the marginal on y
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Bayesian estimators

Optimal Bayes estimator:

x̂Bayes ∈ arg min
x̂
R(x̂|y)

where R(x̂|y) is the a posteriori expected loss

R(x̂|y) = E[L(x, x̂)|y] =

∫
L(x, x̂)p(x|y) dx

and L(x, x̂) is a loss function that measures the discrepancy between x and x̂

Zero-one loss function (Maximum Aposteriori Probability):

Lε(x, x̂) =

{
0 ‖x− x̂‖2 ≤ ε
1 ‖x− x̂‖ > ε

⇒ x̂MAP = arg maxx p(x|y)
= arg maxx p(y|x)p(x)

Quadratic loss(Posterior Mean):

L(x, x̂) = (x− x̂)TQ(x− x̂) ⇒ x̂PM = E[x|y]
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Regularization framework

f(x,y)→ data �delity term: measures the compatibility between x and y
(data-term, loss function, observation model, log-likelihood, ...)

φ(x)→ regularizer: expresses prior information about x

τ → regularization parameter: sets the relative weight between the data term
and the regularizer

Unconstrained and constrained formulations

1) Tickonov regularization: min
x
f(x,y) + τφ(x)

2) Morozov regularization: min
x
φ(x) subject to: f(x,y) ≤ ε

3) Ivanov regularization: min
x
f(x,y) subject to: φ(x) ≤ δ

These formulations are equivalent under mild conditions [Lorenz & Worlicze, 13].
2) and 3) may take an unconstrained form using indicator functions
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Widely used (convex) regularizers

Typical (sparseness-inducing) regularizer:

φ(x) = ‖x‖1

x contains representation coe�cients (e.g., wavelet coe�cients)

Typical frame-based analysis regularizer:

φ(x) = ‖Px‖1

P is an analysis operator

Group regularization (structured sparsity):

φ(x) =
k∑
i=1

λi φi(xGi), Gi ⊆ {1, ..., n}

φi is the `1, `2, or `∞ norm (groups Gi may overlap)
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Total variation regularization

Total variation regularization (promotes localized step gradients)
([Rudin, Osher, Fatemi, 92])

TVp(x) =

n∑
i=1

(|xi − xhi |p + |xi − xvi |p)
1/p

where hi, vi ∈ {1, . . . , n} are the horizontal/vertical neighbors of i

Nonlocal total variation regularization (improved �ne detail preservation)
([Osher et al., 05], [Elmoataz at al., 08])

NLTVp(x) =

n∑
i=1

∑
j∈Ni

ωpi,j |xi − xj |
p

1/p

where Ni ⊂ {1, . . . , n}\{i}
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Example: TV and NLTV denoising
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Regularization oriented to matrices

Mixed norms (structured sparseness-inducing) regularizers

φ(X) = ‖X‖p,1 =
∑
i

‖xi‖p p ∈ {2,∞}, φ(X) = ‖XT ‖p,1

Schatten p-norm (p ≥ 1)

‖X‖Sp =

(∑
i

(σi(X))p

)1/p

where σi(X) is the ith singular value of X.

‖X‖S1 ≡ ‖X‖∗ (nuclear norm, promotes low rank)
‖X‖S2 ≡ ‖X‖F (Frobenious norm)
‖X‖S∞ = σ1(X) (spectral norm)
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Regularization oriented to hyperspectral (multiband) images

Let X ∈ RR×N denote an hyperspectral image with R spectral bands and N
pixels per band

X =

x1

...
xR

(R band images) X = [x1, . . . ,xN ] (N spectral vectors)

Structured tensor regularization

φSTp(X) =

N∑
i=1

τi‖GiXiH‖Sp
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Regularization oriented to hyperspectral (multiband) images

Instances of structured tensor regularization

ST-TV (other names: Vector TV, Hyperspectral TV)
([Bressom, Chan, 2008], [Yuan et al., 2012])

φST-TV(X) =

N∑
i=1

τi‖xi − xhi ,xi − xvi‖F

ST-TV promotes localized step gradients within the image bands and aligns
the �discontinuities� across the bands

ST-NLTVp (other names: Multichannel-NLTV)
([Gilboa, Osher, 2009], [Cheng et al., 2009])

φST-NLTVp(X) =

N∑
i=1

τi
∥∥[(ωi,j(xi − xj), j ∈ Ni]

∥∥
Sp

ST-NLTV combines the characteristics of ST-TV and of NLTV
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Proximal algorithms for solving convex inverse problems

Hyperspectral imaging inverse problems are challenging

Hyperspectral imaging inverse problems are usually very large and often
non-smooth

Gradient-based algorithms cannot be used (e.g., nonlinear conjugate gradient
or quasi-Newton)

Proximal algorithms: [Parikh et al., 13], [Komodakis & Pesquet, 14]

new class of iterative methods suited to solve large scale non-smooth convex
optimization problems

replace a di�cult problem with a sequence of simpler ones

proximity operators, which may be interpreted as implicit subgradients, plays
a central role in the proximal algorithms
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Convex optimization and proximal algorithms

Proximity Operators ([Moreau 62], [Combettes, Wajs, 05], [Combettes, Pesquet, 07,

11], [Parikh, Boyd, 2013])

Moreau proximity operator (shrinkage/thresholding/denoising function

proxτφ(u) = arg min
x

(1/2)‖x− u‖22 + τφ(x)

Projection onto a convex set

ιC(x) =

{
0 x ∈ C
+∞ x /∈ C proxτιC (u) = arg min

x∈C
‖x− u‖22

Proximity operators generalize projections onto convex sets

Proximity operators have the �avor of gradient steps

Fixed points: u∗ minimizes if and only if u∗ = proxτφ(u∗)

Moreau decomposition : u = proxφ(u) + proxφ∗(u)
(φ∗ is the convex conjugate of φ)
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Proximity Operators of widely used convex regularizers

`1-norm: φ(z) = ‖z‖1 ⇒ proxτφ(u) = soft(u, τ) := (|u| − τ)+sign(u)

`2-norm: φ(z) = ‖z‖2 ⇒ proxτφ(u) = vect-soft(u, τ) := (‖u‖2 − τ)+(u/‖u‖2)

`∞-norm: φ(z) = ‖z‖∞ ⇒ proxτφ(u) = u− PB`1(τ)
(u)

nuclear-norm: φ(Z) = ‖Z‖∗ ⇒ proxτφ(X) = UDτ (σ)VT

[U,Σ,V] = svd(X), σ = diag(Σ), Dτ (Σ) = diag(σi − τ)+

Schatten p-norm (p ≥ 1): φ(Z) = ‖Z‖Sp ⇒ proxτφ(X) = UDτ (Σ)VT

[U,Σ,V] = svd(X), Dτ (Σ) = diag(proxτ‖·‖p(σ))
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Proximal algorithms: SALSA ([Afonso, B-D, Figueiredo, 09, 10])

SALSA - (split augmented Lagrangian shrinkage algorithm) solves the optimization

min
x∈Rn

J∑
j=1

gj(H
jx),

x ∈ Rn
Hj ∈ Rnj×n
gj : Rnj 7→ R convex, closed, proper

Algorithm 1: SALSA

initialization:

choose (uj0,d
j
0) ∈ Rnj×nj , j = 1, . . . , J

de�ne G =
∑J
j=1(Hj)THj

set µ ∈]0,+∞[
for k = 0, 1, . . . do

xk+1 = G−1
(∑J

j=1 Hj
(
ujk + djk

))
for j = 1 to J do

ujk+1 = proxgj/µ(Hjxk+1 − djk)

djk+1 = djk − (Hjxk+1 − ujk+1)

return xk+1

Distinctive features

Minimizes sums of convex terms

The computation of proximity
operators is parallelizable

O�ers �exibility in the choice of
splittings

Conditions for easy applicability:

inexpensive proximity operators
inexpensive matrix inversion

Related algorithms: PPXA
[Combettes, Pesquet, 08]
SDMM [Setzer, et al., 10]
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Proximal algorithms: FBPD ([Condat, 13 ], [V�u,13])

FBPD - (Forward Backward Primal Dual) solves the optimization

min
x∈Rn

f(x)+g(x)+h(Gx)
x ∈ Rn, G ∈ Rm×n
f, h : Rn 7→ R convex, closed, proper
g : Rn 7→ R convex, β-Lipschitz continuous gradient

Algorithm 2: FBPD

initialization:

choose (x0,u0) ∈ Rn×m
set τ > 0, σ > 0 such that

τ(β/2 + σ‖G‖2) < 1
for k = 0, 1, . . . do

xk = ∇g(xk −GTuk)
xk+1 = proxτf (xk − τxk)
uk = G(2xk+1 − xk)
uk+1 = proxσh∗(uk + σuk)

return xk+1

Distinctive features

Minimizes sums of convex terms

Does not involve matrix inversions

O�ers �exibility in the choice of
splittings

Conditions for easy applicability:

inexpensive proximity operators

Related algorithms: FBF
[Combettes & Pesquet, 12]
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