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Part 2

Direct (forward) and inverse problems

Classes of direct problems. Examples

Well-posed, ill-posed, and ill-conditioned inverse problems
Curing ill-conditioned/ill-posed inverse problems

The Bayesian philosophy. Bayesian estimators

The regularization framework

Widely used (convex) regularizers

Proximity operators and proximity algorithms
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Direct/Inverse problems

Direct (forward) problem

Inverse problem

Example

Direct problem: the computation of the trajectories of bodies from the knowledge
of the forces

Inverse problem: determination of the forces from the knowledge of the trajectories

Newton solved the first direct/inverse problem: the determintion of the
gravitation force from the Kepler laws describing the trajectories of planets
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Example: a linear time invariant (LTI) system

o T L]
x(t T

@ Direct problem: y(t) =z xh(t) = /x(t')h(t —t')dt'

Fourier domain: j(w) = h(w)Z(w) = h(w) = (1+ jwr)L,
@ Inverse problem z(w) = y(w)/h(@)

y(t)

e Source or dificulties: ! is unbounded: [~ (w)| — oo as |w| — oo

= A perturbation on 3 leads to a perturbation on = given by

Az(w) = Ay(w)(1 +j
#(w) y(@)(1 + jwr) high frequencies of the

perturbation are amplified,
degrading the estimate of =

T=RC
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Classes of direct ( roblems: linear operators

TEeX Operator yey
Original data (image) “’4( ) ’I’LT Observed data (image)
perturbation

@ Linear operators in Euclidean spaces
y=Ax+n, xe€R"” yneR” AecR™"

@ Applications:

image denoising, deconvolution, deblurring
X-ray tomography, MR imaging, radar imaging
imaging compressive sensing

image deblurring, superresolution, fusion
hyperspectral unmixing
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Classes of direct problems: statistical observation models

py|x (ylz)
Original data (image) Observed data (image)

Examples: (x € R", y € R™, A € R™*")
L(Ax) = — 10ng\X(Y|X) where L(z) = ZZL &(2i,¥i)

o Gaussian observations: {g(z,y) = (2 — y)*
(widely used in image restoration)

e Poissonian observations: &p(z,y) = 2z + g, (2) — ylog(zy)
(noise in photo-electric conversion, SPET (single photon emission
tomography, PET (positron emission tomography))

o Multiplicative noise: &w(z,y) = L(z + e¥~%)

(radar, sonar)
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EIES

convolution

—)A—’®—’
I

N ~ Gaussian

\
@(——N ~ Gaussian

| A FT (MRI) subsampling

N ~ Gauss1an
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—|P(A)

—

Poissonian

multiplicative noise
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Example: hyperspectral pansharpening

Yn =Apx+ny Y, =Apx+1n,

150x100x 100
% € R600x400x100 yr€R

» c R600X400><1

Yy

original HS spatially blurred and spectrally blurred HS
downsampled HS
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Example: hyperspectral compressive sensing

{yl,...,ym} {A]_,...,Am}

U {4

n2

Al@ « o o An@

11111111100001: 11111111100001:
11001010100001100/ 11001010100001100”
'00101010101010001, 11 '00101010101010001 11
00110010101110000"7 | 00110010101110000"7  ;
11001 11001
101 1104
011 1041
11 111

0 00 o
1 0y
1 1
[111110000111010101 [111110000111010101

y1 = (X, A1)  ym = (X,Ay)
_ perfect reconstruction
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Well-posed/ill-posed inverse problems [Hadamard, 1923|

Definition
Let A: X — Y be a (possible nonlinear) operator

The inverse problem of solving A(z) = y is well-posed in the Hadamard sense if:

1) A solution exists for any y in the observed data space
2) The solution is unique
3) The inverse mapping y — x is continuous

@ An inverse problem that is not well-posed is termed ill-posed
@ The operator A of an inverse well/ill-posed problem is termed well/ill-posed
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lll-conditioned inverse problems

111-posed

111-conditioned

X Y

@ Many well-posed inverse problems are ill-conditioned, in the sense that

A A
Azl _ ay]
] lyl
o for linear operators ”HAgﬁH < cond(A)””Agﬁ|| (tight bound)
T )

cond(A) = ||A|| A7
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An ill-conditioned IP: discrete deconvolution

Let x,y,n € R" such that y = Ax + n, where A € R"*" represents a cyclic
convolution with a Gaussian convolution kernel.

1 1.2

s a—1
be 1 X=A""y
0.8
0.8
0.6 0.6
0.4 0.4
0.2
0.2
0
] -0.2
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
1 3 N(0,10751)

:: NI

. T
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An ill-conditioned IP: 1D discrete deconvolution

Eigen-decomposition of cyclic matrices

° Avy = Nvy = A=VAV?, V*V=VV*=1  (unitary)
V — eigenvector (Fourier) matrix, A — eigenvalue matrix (diagonal) matrix
n
1
n =1
o A=l vivi, A0 k=1,...n) = ATI =3 vy
k=1"%
102
oey=Ax+n
exXx=A"1y 10° N
= [vyl
n  (vpn) 102
X+ D o1 o Vk X
) Che
10
10° - - -
noise dominates at high
|| frequencies and is amplified by Af *
10% . ‘ ; ! ! !

0 5 10 15 20 25 30 35
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Example: 1D discrete deconvolution

@ Regularization by filtering

Xo = A wa (k) vi(viy)
k=1

such that
Q wa( M)At —=0asA—0
@ The larger eigenvalues are retained

o Wiener filter

A2 < Z" A .
A = =
wa(| |) |)\|2+Oé Xa it |)\k|2+avk(vkxy)

@ Equivalent variational formulation (Tikhonov regularization)

Xo = argmin [y — Ax[3 + a/x|/3

= (A*A + o) 'A%y
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Example: 1D Discrete deconvolution

a= 1077 ||Ra—x%|| =47 4 =106 |%a—x|| =204 La= 105 ||Ra —x|| = 1.25
15

08
06
05
04
02
of--
oA
3 -05 02
0 50 100 150 200 250 300 O 50 100 150 200 250 300 O 50 100 150 200 250 300

a=10"% [Ra-x|=13 a=10"3 [%a-x|=14 a=10"2 [Xa—x||=15
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Example: 2D Discrete deconvolution

e convolution kernel A: uniform 9 x 9, n ~ N(0,0% = 0.56?)

o cond(A) = 2.2 x 105, SNR= Var(g) = 40dB
g

° X y=Ax+n
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Example: 2D Discrete deconvolution

a=10"3 ISNR = -16dB a=5x10"3 ISNR = -5dB

a=3x10"2 ISNR = 5.6dB
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Curing lll-posed/Ill-conditioned inverse problems

Golden rule for solving ill-posed/ill-conditioned inverse problems
Search for solutions which are:
@ compatible with the observed data

@ satisfy additional constraints (a priori or prior information) coming from the
(physics) problem

Frameworks to solve inverse problems

o Bayesian inference: the causes are inferred by minimizing the Bayesian risk

o Regularization theory: the causes are inferred by minimizing a cost function
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The Bayesian philosophy

Bayesian Inference

o Probabilities describe degrees of belief, not limiting relative frequencies

@ We can make probability statements about parameters, even though they are
fixed quantities

@ Any inference should be based on the posterior

_ pyix(ylx)px ()
pxw(ﬂy) = py—(y)

where px () is the prior (or a priori) distribution that expresses our belief
about x before we see any data and py (y) is the marginal on y
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Bayesian estimators

Optimal Bayes estimator:
&;\Bayes € arg m,in R(?ﬂy)
where R(Z|y) is the a posteriori expected loss
R(@ly) = EL(.2)ly) = [ L. Eplaly) do

and L(x,Z) is a loss function that measures the discrepancy between x and Z

@ Zero-one loss function (Maximum Aposteriori Probability):

Lo(2,5) = 0 |lz—2|2<e Tmap = arg max, p(zly)
- L fle—2) >« = arg max p(y|z)p()

@ Quadratic loss(Posterior Mean):

L(z,7) = (x—2)TQ(x —7) = =pm = E[zy]
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Regularization framework

e f(x,y) — data fidelity term: measures the compatibility between x and y
(data-term, loss function, observation model, log-likelihood, ...)

@ ¢(x) — regularizer: expresses prior information about x

o 7 — regularization parameter: sets the relative weight between the data term
and the regularizer

Unconstrained and constrained formulations

1) Tickonov regularization: min f(x,y) + 7¢(x)
2) Morozov regularization: min ¢(x) subject to: f(x,y) <e
3) lvanov regularization: min f(x,y) subject to: ¢(x) <§

These formulations are equivalent under mild conditions [Lorenz & Worlicze, 13].
2) and 3) may take an unconstrained form using indicator functions
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Widely used (convex) regularizers

Typical (sparseness-inducing) regularizer:

¢(x) = [l

x contains representation coefficients (e.g., wavelet coeficients)

Typical frame-based analysis regularizer:
o(x) = [[Px]y

P is an analysis operator

Group regularization (structured sparsity):
k
G(x) =D Xidi(xa,), GiC{l,..,n}
i=1

¢; is the £y, Lo, or {o, norm (groups G; may overlap)

%

S

G

SFPT-GH, May, 2016
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Total variation regularization

Total variation regularization (promotes localized step gradients)
([Rudin, Osher, Fatemi, 92])

n
=D (s = an [P o = e 1)
i=1
where h;,v; € {1,...,n} are the horizontal /vertical neighbors of i

Nonlocal total variation regularization (improved fine detail preservation)
([Osher et al., 05], [Elmoataz at al., 08])

1/p
n

NLTV,(x) =Y | D whjlmi —

i=1 \jEN;

where N; C {1,...,n}\{i}
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Example: TV and NLTV denoising
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Regularization oriented to matrices

Mixed norms (structured sparseness-inducing) regularizers

B0 = IXlpa = Yl pe {200k 600 = X7

[OTToTo 0 0 [0
[0 [mo]o]o]o]o]o]o]Mo]o
N NNNNEEE [
x [Ojmo]o]ofolo]o o]0l
[0 OO ]ol0 ][0} [mC]0
[O[l[C[o[o]Jolo]ofo o]0
0 e [
[o|o]o]o] ol o]olMo]

Schatten p-norm (p > 1)

1/p
1X]ls, = <Z(@(X))p>

where ¢;(X) is the ith singular value of X.

1X]|ls, = [IX]|+ (nuclear norm, promotes low rank)
IX|ls, = [IX]||r (Frobenious norm)
IX|ls., = 01(X) (spectral norm)
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Regularization oriented to hyperspectral (multiband) images

Let X € REXN denote an hyperspectral image with R spectral bands and N

pixels per band

1

X
X = | t | (R band images) X = [x1,...,xn] (N spectral vectors)
<R
x! x2 xR
Y X; € RE
N;
X; = [Xi’i S M]

Structured tensor regularization

J. Bioucas Dias (IT, IST, ULisboa)

N
¢sT,(X) = 7l|GXH]s,

i=1
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Regularization oriented to hyperspectral (multiband) images

Instances of structured tensor regularization

o ST-TV (other names: Vector TV, Hyperspectral TV)
([Bressom, Chan, 2008], [Yuan et al., 2012])

N
pstTv(X) = ZTiHXi — Xh,, Xi — Xy, ||F
i=1

ST-TV promotes localized step gradients within the image bands and aligns
the “discontinuities” across the bands

e ST-NLTV,, (other names: Multichannel-NLTV)
([Gilboa, Osher, 2009], [Cheng et al., 2009])

N

dsTNLTV, (X) = Zﬁ'”[(wi,j(xi —Xx;),j € M]Hsp

i=1

ST-NLTV combines the characteristics of ST-TV and of NLTV
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Proximal algorithms for solving convex inverse problems

Hyperspectral imaging inverse problems are challenging
@ Hyperspectral imaging inverse problems are usually very large and often
non-smooth
o Gradient-based algorithms cannot be used (e.g., nonlinear conjugate gradient
or quasi-Newton)

Proximal algorithms: [Parikh et al., 13], [Komodakis & Pesquet, 14]
@ new class of iterative methods suited to solve large scale non-smooth convex
optimization problems
o replace a difficult problem with a sequence of simpler ones

@ proximity operators, which may be interpreted as implicit subgradients, plays
a central role in the proximal algorithms

SFPT-GH, May, 2016 29 / 33
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Convex optimization and proximal algorithms

Proximity Operators ([Moreau 62], [Combettes, Wajs, 05], [Combettes, Pesquet, 07,
11], [Parikh, Boyd, 2013])

Moreau proximity operator (shrinkage/thresholding/denoising function
prox,.;(u) = argmin (1/2)[|x — ulf3 + 7¢(x)
Projection onto a convex set
0 xel

_ _ : 2
et ={ . rse prox,,. (1) = axgmin [ — ul

Proximity operators generalize projections onto convex sets

Proximity operators have the flavor of gradient steps v

u u = prox,4(u)
Fixed points: u* minimizes if and only if u* = prox,4(u*)

Moreau decomposition : u = prox,(u) + prox . (u)
(¢* is the convex conjugate of ¢)
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Proximity Operators of widely used convex regularizers

{1-norm: ¢(z) = ||z[1 = prox,(u) = soft(u,7) := (Ju| — 7)sign(u)

lymnorm: ¢(z) = [|z|lz = prox.,(u) = vect-soft(u,7) := (||uflz — 7).+ (u/[[ull2)

loc-norm: §(z) = ||z]|c = prox.,(u) =u-— Pp, (1)

nuclear-norm: ¢(Z) = || Z|. = prox,4(X) = UD,(o)VT

[U’ Z’ V] = SVd(X)’ o = diag(2)7 DT(E) = diag(ai — T)+

Schatten p-norm (p > 1): ¢(Z) = ||Z]|s, = prox,,(X) = UD(X)VT

[U, 3, V] = svd(X), D, (%) = diag(prox, ., (o))
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Proximal algorithms: SALSA ([Afonso, B-D, Figueiredo, 09, 10])

SALSA - (split augmented Lagrangian shrinkage algorithm) solves the optimization

J x € R"
min Zgj(Hjx), H/ € Rmixn
xeRn i3 g; : R™ — R convex, closed, proper

Algorithm 1: SALSA

initialization:

choose (u},d)) e R *", j=1,...,J
define G = Y°7_, (H/)TH/

set p €]0, +00

for k=0,1,... do

X1 =G <Zf_1 HY (ui + di))
for j=1to J do '
L u, = proxgj/u(HJka —dj)
d?chl =dj, — (H/xp41 — ule)

return x;_

J. Bioucas Dias (IT, IST, ULisboa)
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Distinctive features
@ Minimizes sums of convex terms
@ The computation of proximity
operators is parallelizable
o Offers flexibility in the choice of
splittings
o Conditions for easy applicability:
@ inexpensive proximity operators
e inexpensive matrix inversion
@ Related algorithms: PPXA
[Combettes, Pesquet, 08]
SDMM [Setzer, et al., 10]
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Proximal algorithms: FBPD ([condat, 131, [vii,13])

FBPD - (Forward Backward Primal Dual) solves the optimization

x € R", G e R™*"
min f(x)+g(x)+h(Gx) f,h:R™— R convex, closed, proper
xeRe g:R" = R convex, 3-Lipschitz continuous gradient

Algorithm 2: FBPD
initialization:
choose (xg,up) € R™*™

Distinctive features

@ Minimizes sums of convex terms

set 7 > 0,0 > 0 such that @ Does not involve matrix inversions
(B/2+0||G|?) < 1 o Offers flexibility in the choice of
for k=0,1,... do splittings
%r = Vg(x — GTuy) e Conditions for easy applicability:
Xk+1 = prox,rf(xk — TXg) e inexpensive proximity operators

U, = G(2xp41 — Xp)
Ujq1 = prox,,« (u + o)
return x5

o Related algorithms: FBF
[Combettes & Pesquet, 12]
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