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Part 3 - Inverse problems in hyperspectral imaging

@ Denoising
@ Hyperspectral sharpening
@ Hyperspectral unmixing
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Denoising

Observation model: y =x +n (or Y =X+N)
o x,n € R", n=RN
o N~ N(0,,C, ®C,)

Denoising is arguably the simplest inverse problem. But is us a fundamental one.

Any model for X (prior, regularizer, constraints) that works well in a denoising
problem is very likely to work well in other applications
Relevant approaches to hyperspectral denoising

@ 3D wavelet-based [Rasti et al., 12, 13]

@ non-local patch-based methods [Maggioni et al., 12]

@ ST-TV and ST-NLTYV regularization [Bresson & Chan, 08], [Yuan et al., 12],
[Cheng et al., 14], [Chiercia et al., 15]

@ tensor decompositon [Karami et al. 11]
@ low rank and self-similarity [Zhuang & B-D, 16]
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3D Wavelet-based denoising

Let W € R%*" be a wavelet transform and w := Wx (the wavelet coefficients)

Fundamental property: 3D wavelet coefficients of HSIs are sparse or compressible

@ w is sparse means that |w|o < d (IIwllo = {|w; : w; # 0]})

@ w is compressible means that its elements have a fast decaying tails
Convex variational formulation to denoising

min (1/2)[ly — x[|g + 7| Wx|, (1)

where [|x||, ;= x"Qx is a weighted (5-norm (usually, Q = c/’®cy?)

The ¢1 norm, jointly with the quadratic data fidelity term, promotes sparsity on
the vector w = Wx
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3D Wavelet-based denoising

If Q =1 and W is orthogonal (WW7T = WTW = 1I), then
min (1/2)[ly = x|l + 7[|Wx|, & min [y — w|g + 7l|wl

where ¥ := Wy and

x=WTw w = soft(y, 7)
= soft -
w = soft(y, ) Insight: (y; = Z; + 1)
@ T; is heavy tailed
e n; ~N(0,02)
L J o w; = 0 if 7; is dominated by the

noise
o w; =y; = 7 if y; is dominated by
the signal
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Example: 3D Wavelet-based denoising (3D-DWT)

Example with 3D-DWT N = 640 x 340, R = 103, n ~ A(0, 02I)

Original HSI Noisy observation Estimated band 60
PSNR, = 20dB PSNR; = 31dB
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Wavelet-based denoising with orvercomplete representations

If d >n (W7 is overcomplete) or Q # al, then
min (1/2)[ly = x|l + 7[|Wx|, ¢ min [y — w|[g + 7l|wl
Analysis formulation
min (1/2) [y — x|, + 7| W,
Synthesis formulation (W is a Parseval frame: WTW = 1I)
rr‘lhiln(l/2)||y - WTW||2Q + 7w, st: WWiw=w

Both, the analysis and the synthesis optimizations are easily solved with SALSA
and FBPD algorithms.
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Example: 3D Wavelet-based denoising (3D-DT-COMP)

Example with 3D-DT-COMP N = 640 x 340, R = 103, n ~ N(0, 0°I)

Original HSI Noisy observation
PSNR, = 20dB Estimated band 60
PSNRz = 33dB
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Non-local patch(cube)-based methods

Real world images are self-similar: given an image patch (cubes in volume), there
are similar patches at different locations and scales.

Self-similarity has been mainly exploited in two ways:

o Non-local (generalized) mean: for each patch find similar ones in the image
and produce a patch estimate based on the found patches ([Buades et al.,
2005], [Dabov et al., 07], [Maggioni et al., 12])

@ Dictionary learning: express each patch as sparse representation in a given

dictionary, which may be learned from the data ([Elad & Aharon, 05] [Mairal et.
al., 08,10])

Patch-based image holds the state-of-the-art in image denoising
([Dabov et al., 07], [Maggioni et al., 12], [Chatterjee, P. Milanfar, 12])
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Non-local patch(cube)-based methods

y;(noisy patch) Denoising algorithm

@ Dictionary learning: estimate D := [dy,...,dk] from
the (overlapped) patches x;, ¢ = 1,... by solving the
matrix factorization problem

NP
> lyi = Daull3 + Al evillx

Dal’ ,C!Np -
=1

@ Patch composition: compute an estimate of the image
by averaging the estimated patches X; = Doy

J. Bioucas Dias (IT, IST, ULisboa) Part 3 - IPs in Hyperspectral Imaging SFPT-GH, May, 2016 10 / 20



Block matching 4D (BM4D) ([Maggioni et al., 1

BM4D is an extension to 3D images of BM3D ([Dabov et al., 07])

Cube-wise
Noisy. A estimates .

O = Aggregation
data N

Hard-thresholding estimate «—— J

Inverse 4-D transform

Grouping by cube-matching — Hard-thresholding = = = = <
T Adaptive

1
1
| t weights

— | — J_D transform

From ([Maggioni et al., 12])
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Example: Cube-based denoising with BM4D

Example with BM4D N = 640 x 340, R = 103, n ~ N(0, 0°T)

Original HSI Noisy observation

PSNR, =20dB Estimated band 60
PSNRz = 36 dB (600 sec)
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Low rank + self-similarity ([zhuang & B-D, 16))

Low rank: X = EZ E € RF*? holds an orthonormal basis for range(X)
P 1
Z = argmin ||EZ — Y7 + \p(Z)
1
=argmin |2 — ETY [} + \6(2),

Regularizer ¢ is decoupled
k
A(Z) = ¢:(Z")

i=1
Solution:
Pap, (€] Y)
Z=1(ETY) = :
g, (e Y)
where

't
Yrg, = argmin |y — wlE + Agi(w)

is the so-called denoising operator, or Moreau proximity operator (MPO) of ¢
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Example: Low rank + self-similarity ((zhuang & B-D, 16])

MPO for ¢: BM3D N = 640 x 340, R = 103, n ~ N(0, o21)

Original HSI Noisy observation Estimated band 60
PSNR, = 20dB PSNRz = 39dB (8 sec)
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Example: Low rank + self-similarity ((zhuang & B-D, 16])

Denising + inpainting
MPO for ¢: BM3D N = 640 x 340, R = 103, n ~ N(0, o°I)

Original HSI Noisy observation Estimated band 60
PSNR, = 20dB PSNR; = 39dB (8 sec)
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Example: Low rank + self-similarity ((zhuang & B-D, 16])

MPO for ¢: BM3D N = 640 x 340, R = 103, Poissonian noise y = P(yx)

Original HSI Noisy observation Estimated band 60
PSNRz; = 47dB (11 sec)
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Structured tensor TV-based regularization

ST-TV (Vector TV, Hyperspectral TV)
([Bressom & Chan, 2008], [Yuan et al., 2012])

min (1/2)][ Y — X2, + Agstrv(X)

where
N

dstTv(X) = ZTz'HXi — Xp, X — Xy,
i—1

F

@ ST-TV promotes localized step gradients within the image bands and align
the “discontinuities” across the bands

@ by controlling the amount of spatial regularization, parameters 7; mitigates
the well known undesirable staircasing effects associated to TV regularization

@ ST-TV optimization problem is easily solved by SALSA and FBPD algorithms
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Example: ST-TV denoising ([Yuan et al., TGRS 12])

Left: Noisy band; Middle Wavelet; Right: ST-TV (SSAHTV))
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Structured tensor NLTV-based regularization

ST-NLTV denoising and inpainting

min (1/2)[ly - AXHZ + AdstniTy, (X)
where A € R™*"™ is a diaginal operator (mask), x = vec(X), and

N

¢sT-NLTV, (X) = Zn”[(w” (xi —x5),j € M]Hsp

i=1
is the ST-NLTV regularizer ([Chiercia et. al., 15], multichannel-NLTV for p = 2)
[Cheng, et al. 14]

The weights w;_;, learned from the observed data, measure the similarity between
pixels ¢ and j

@ ST-NLTV improves over ST-TV regarding the preservation of textures,
details, and fine structures

@ ST-NLTV optimization problem is solved by SALSA and FBPD algorithms
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Example: ST-NLTV denoising ([Chiercia et al., TIP 12])

HYDICE band 81 (Urban area)

(d) Noisy. (e) M-NLTV: 12.76 dB.

Left: Inpainting example from [Chiercia et al., 12]. Degradation: additive
zero-mean white Gaussian noise with ¢ = 5 and 90% of decimation (N = 65536,
R =191, M = 6553 and L = 191)
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