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Outline

Part 3 - Inverse problems in hyperspectral imaging

Denoising

Hyperspectral sharpening

Hyperspectral unmixing
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Denoising

Denoising

Observation model: y = x+ n (or Y = X+N)

x,n ∈ Rn, n = RN

N ∼ N (0n,Cx ⊗Cλ)

Denoising is arguably the simplest inverse problem. But is us a fundamental one.

Any model for X (prior, regularizer, constraints) that works well in a denoising
problem is very likely to work well in other applications

Relevant approaches to hyperspectral denoising

3D wavelet-based [Rasti et al., 12, 13]

non-local patch-based methods [Maggioni et al., 12]

ST-TV and ST-NLTV regularization [Bresson & Chan, 08], [Yuan et al., 12],
[Cheng et al., 14], [Chiercia et al., 15]

tensor decompositon [Karami et al. 11]

low rank and self-similarity [Zhuang & B-D, 16]
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3D Wavelet-based denoising

Let W ∈ Rd×n be a wavelet transform and w := Wx (the wavelet coe�cients)

Fundamental property: 3D wavelet coe�cients of HSIs are sparse or compressible

w is sparse means that ‖w‖0 � d (‖w‖0 = {|wi : wi 6= 0|})
w is compressible means that its elements have a fast decaying tails

Convex variational formulation to denoising

min
x

(1/2)‖y − x‖2Q + τ‖Wx‖1 (1)

where ‖x‖2Q := xTQx is a weighted `2-norm (usually, Q = C
1/2
x ⊗C

1/2
λ )

The `1 norm, jointly with the quadratic data �delity term, promotes sparsity on
the vector w = Wx
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3D Wavelet-based denoising

If Q = I and W is orthogonal (WWT = WTW = I), then

min
x

(1/2)‖y − x‖2Q + τ‖Wx‖1 ⇔ min
w
‖ỹ −w‖2Q + τ‖w‖1

where ỹ := Wy and

x̂ = WT ŵ ŵ = soft(ỹ, τ)

Insight: (ỹi = x̃i + ñi)

x̃i is heavy tailed

ñi ∼ N (0, σ2
n)

w̃i = 0 if ỹi is dominated by the
noise

w̃i = ỹi ± τ if ỹi is dominated by
the signal
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Example: 3D Wavelet-based denoising (3D-DWT)

Example with 3D-DWT N = 640× 340, R = 103, n ∼ N (0, σ2I)

Original HSI Noisy observation
PSNRy = 20 dB

Estimated band 60
PSNRx̂ = 31 dB
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Wavelet-based denoising with orvercomplete representations

If d > n (WT is overcomplete) or Q 6= αI, then

min
x

(1/2)‖y − x‖2Q + τ‖Wx‖1 < min
w
‖ỹ −w‖2Q + τ‖w‖1

Analysis formulation
min
x

(1/2)‖y − x‖2Q + τ‖Wx‖1

Synthesis formulation (W is a Parseval frame: WTW = I)

min
w

(1/2)‖y −WTw‖2Q + τ‖w‖1, s.t.: WWTw = w

Both, the analysis and the synthesis optimizations are easily solved with SALSA
and FBPD algorithms.
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Example: 3D Wavelet-based denoising (3D-DT-COMP)

Example with 3D-DT-COMP N = 640× 340, R = 103, n ∼ N (0, σ2I)

Original HSI Noisy observation
PSNRy = 20 dB Estimated band 60

PSNRx̂ = 33 dB
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Non-local patch(cube)-based methods

Real world images are self-similar: given an image patch (cubes in volume), there
are similar patches at di�erent locations and scales.

Self-similarity has been mainly exploited in two ways:

Non-local (generalized) mean: for each patch �nd similar ones in the image
and produce a patch estimate based on the found patches ([Buades et al.,
2005], [Dabov et al., 07], [Maggioni et al., 12])

Dictionary learning: express each patch as sparse representation in a given
dictionary, which may be learned from the data ([Elad & Aharon, 05] [Mairal et.

al., 08,10])

Patch-based image holds the state-of-the-art in image denoising
([Dabov et al., 07], [Maggioni et al., 12], [Chatterjee, P. Milanfar, 12])
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Non-local patch(cube)-based methods

Denoising algorithm

1 Dictionary learning: estimate D := [d1, . . . ,dK ] from
the (overlapped) patches xi, i = 1, . . . by solving the
matrix factorization problem

min
D,α1,...,αNp

Np∑
i=1

‖yi −Dαi‖22 + λ‖αi‖1

2 Patch composition: compute an estimate of the image
by averaging the estimated patches x̂i = Dαi
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Block matching 4D (BM4D) ([Maggioni et al., 12])

BM4D is an extension to 3D images of BM3D ([Dabov et al., 07])

From ([Maggioni et al., 12])

J. Bioucas Dias (IT, IST, ULisboa) Part 3 - IPs in Hyperspectral Imaging SFPT-GH, May, 2016 11 / 20



Example: Cube-based denoising with BM4D

Example with BM4D N = 640× 340, R = 103, n ∼ N (0, σ2I)

Original HSI Noisy observation
PSNRy = 20 dB Estimated band 60

PSNRx̂ = 36 dB (600 sec)
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Low rank + self-similarity ([Zhuang & B-D, 16])

Low rank: X = EZ E ∈ RR×p holds an orthonormal basis for range(X)

Ẑ = argmin
Z

1

2
‖EZ−Y‖2F + λφ(Z)

= argmin
Z

1

2
‖Z−ETY‖2F + λφ(Z),

Regularizer φ is decoupled

φ(Z) =

k∑
i=1

φi(Z
i)

Solution:

Ẑ = ψλφ(E
TY) =

 ψλφ1
(eT1 Y)
...

ψλφk
(eTkY)


where

ψλφi
= argmin

w

1

2
‖y −w‖2F + λφi(w)

is the so-called denoising operator, or Moreau proximity operator (MPO) of φ
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Example: Low rank + self-similarity ([Zhuang & B-D, 16])

MPO for φ: BM3D N = 640× 340, R = 103, n ∼ N (0, σ2I)

Original HSI Noisy observation
PSNRy = 20 dB

Estimated band 60
PSNRx̂ = 39 dB (8 sec)
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Example: Low rank + self-similarity ([Zhuang & B-D, 16])

Denising + inpainting
MPO for φ: BM3D N = 640× 340, R = 103, n ∼ N (0, σ2I)

Original HSI Noisy observation
PSNRy = 20 dB

Estimated band 60
PSNRx̂ = 39 dB (8 sec)
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Example: Low rank + self-similarity ([Zhuang & B-D, 16])

MPO for φ: BM3D N = 640× 340, R = 103, Poissonian noise y = P(γx)

Original HSI Noisy observation Estimated band 60
PSNRx̂ = 47 dB (11 sec)
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Structured tensor TV-based regularization

ST-TV (Vector TV, Hyperspectral TV)
([Bressom & Chan, 2008], [Yuan et al., 2012])

min
X

(1/2)
∥∥Y −X

∥∥2
F
+ λφST-TV(X)

where

φST-TV(X) =

N∑
i=1

τi‖xi − xhi
,xi − xvi‖F

ST-TV promotes localized step gradients within the image bands and align
the �discontinuities� across the bands

by controlling the amount of spatial regularization, parameters τi mitigates
the well known undesirable staircasing e�ects associated to TV regularization

ST-TV optimization problem is easily solved by SALSA and FBPD algorithms
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Example: ST-TV denoising ([Yuan et al., TGRS 12])

HYDICE band 108 of Washington DC Mall

HYDICE band of Urban data sets

Left: Noisy band; Middle Wavelet; Right: ST-TV (SSAHTV))
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Structured tensor NLTV-based regularization

ST-NLTV denoising and inpainting

min
X

(1/2)
∥∥y −Ax

∥∥2
Q
+ λφST-NLTVp(X)

where A ∈ Rm×n is a diaginal operator (mask), x = vec(X), and

φST-NLTVp
(X) =

N∑
i=1

τi
∥∥[(ωi,j(xi − xj), j ∈ Ni]

∥∥
Sp

is the ST-NLTV regularizer ([Chiercia et. al., 15], multichannel-NLTV for p = 2)
[Cheng, et al. 14]

The weights ωi,j , learned from the observed data, measure the similarity between
pixels i and j

ST-NLTV improves over ST-TV regarding the preservation of textures,
details, and �ne structures

ST-NLTV optimization problem is solved by SALSA and FBPD algorithms
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Example: ST-NLTV denoising ([Chiercia et al., TIP 12])

HYDICE band 81 (Urban area)

Left: Inpainting example from [Chiercia et al., 12]. Degradation: additive
zero-mean white Gaussian noise with σ = 5 and 90% of decimation (N = 65536,
R = 191, M = 6553 and L = 191)
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