

Part 3.2 - Hyperspectral sharpening

José M. Bioucas Dias

Instituto de Telecomunicações, Instituto Superior Técnico Universidade de Lisboa Portugal

Société Française de Photogrammétrie et Télédétection Grenoble, France, May, 2016

J. Bioucas Dias (IT, IST, ULisboa)

Part 3 - IPs in Hyperspectral Imaging

Observation model (A is separable)

$$\mathbf{Y}_h = \mathbf{X} \mathbf{A}_x \mathbf{M} + \mathbf{N}_y, \qquad \mathbf{Y}_m = \mathbf{A}_\lambda \mathbf{X} + \mathbf{N}_m$$

- $\mathbf{X} \in \mathbb{R}^{R \times N}$
- $\mathbf{Y}_h \in \mathbb{R}^{R \times M}$ observed hyperspectral image $(M = N/d^2$ d is the downsampling factor)
- $\mathbf{Y}_m \in \mathbb{R}^{L imes N}$ observed multispectral image
- $\mathbf{A}_x \in \mathbb{R}^{N imes N}$ (usually a convolution)
- $\mathbf{A}_{\lambda} \in \mathbb{R}^{L imes R}$ (spectral responses of the MS sensor)
- $\mathbf{M} \in \mathbb{R}^{N imes N}$ (downsampling matrix)
- $\mathbf{N}_h \sim \mathcal{MN}(\mathbf{0}_{R \times M}, \mathbf{C}_h, \mathbf{I}_M)$
- $\mathbf{N}_m \sim \mathcal{MN}(\mathbf{0}_{L \times N}, \mathbf{C}_m, \mathbf{I}_N)$

Hyperspectral sharpening contains a number of HSI subproblems:

- Denoising: $\mathbf{A}_x = \mathbf{I}_N$, $\mathbf{M} = \mathbf{I}_N$, observation: \mathbf{Y}_h
- Inpainting: $\mathbf{A}_x = \mathbf{I}_N$, \mathbf{M} is diagonal (a mask), observation: \mathbf{Y}_h
- Superresolution: A_x is a lowpass filer, M is a dowsampling operator; observation: Y_h
- HS pansharpening: \mathbf{A}_x is a lowpass filer, \mathbf{M} is a dowsampling operator, observation \mathbf{Y}_h and $\mathbf{Y}_m \in \mathbb{R}^{1 \times N}$ (a pancromatic image)
- HS MSharpening: \mathbf{A}_x ia a lowpass filer, \mathbf{M} is a dowsampling operator, observation \mathbf{Y}_h and $\mathbf{Y}_m \in \mathbb{R}^{L \times N}$ (an MS image)

Hyperspectral sharpening. Blurring operators [Simoes et. al, 14]

Illustrative example of blurring operators

Estimated PSF of the Hyperion instrument (GSD = 10 m)

Hyperion spatial resolution: 30 m

Spectral responses of the IKONOS sensor

MS channels: green, red, cyan, magenta Pan Channel: blue

Hyperspectral sharpening variational formulation

What about the conditioning of the Hyperspectral sharpening (HSharp) problem?

Number of optimization variables: $R \times N$

Number of measurements: $R \times M + L \times N = (R/d^2 + L)N$

Hsharpening is ill-posed if $L/R < 1 - 1/d^2$, which is always the case (example: HYPERION/IKONOS, $L/R \simeq 0.02$, $1 - 1/d^2 \simeq 0.9$)

Typical variational formulation

$$\min_{\mathbf{X}} (1/2) \left\| \mathbf{Y}_h - \mathbf{X} \mathbf{A}_x \mathbf{M} \right\|_{Q_h}^2 + (1/2) \left\| \mathbf{Y}_m - \mathbf{A}_\lambda \mathbf{X} \right\|_{Q_m}^2 + \phi_S(\mathbf{X}) + \phi_{LR}(\mathbf{X})$$

where

$$\|\cdot\|_{Q_h}^2 := \|\mathbf{C}_h^{-1/2}(\cdot)\|_F^2, \qquad \|\cdot\|_{Q_m}^2 := \|\mathbf{C}_m^{-1/2}(\cdot)\|_F^2$$

 $\phi_S(\cdot)$ is a spatial-spectral regularizer

 $\phi_{LR}(\cdot)$ is a low rank regularizer

HSIs spectral vectors live systematically in a low dimensional subspace

$$\mathbf{X} = \mathbf{E}\mathbf{Z}, \qquad \mathbf{E} \in \mathbb{R}^{R \times p}, (p \ll R), \qquad \mathbf{Z} \in \mathbb{R}^{p \times N}$$

 ${f E}$ may be learned from ${f Y}_h$ [B-D & Nascimento, 12]

Variational formulation with hard low rank constraint

$$\min_{\mathbf{Z}} (1/2) \left\| \mathbf{Y}_h - \mathbf{E} \mathbf{Z} \mathbf{A}_x \mathbf{M} \right\|_{Q_h}^2 + (1/2) \left\| \mathbf{Y}_m - \mathbf{A}_\lambda \mathbf{E} \mathbf{Z} \right\|_{Q_m}^2 + \phi_S(\mathbf{Z})$$

Advantages:

- The number of optimization variable reduces often by more than one order of magnitude
- there is no need for low rank regularization

HySure (Hyperspectral Superesolution) [Simoes, B-D, &, Almeida, 14] solves the optimization

$$\min_{\mathbf{Z}} (1/2) \left\| \mathbf{Y}_h - \mathbf{EZA}_x \mathbf{M} \right\|_{Q_h}^2 + (1/2) \left\| \mathbf{Y}_m - \mathbf{A}_\lambda \mathbf{EZ} \right\|_{Q_m}^2 + \phi_{\mathsf{VTV}}(\mathbf{Z})$$

where

- ullet E, $old A_x$, and $old A_\lambda$ are learned from $old Y_h$ and $old Y_m$ prior to the estimation of old Z
- $\phi_{\rm VTV}$ is the structured tensor TV for q=2
- The optimization is solved with SALSA by using the template:

$$g_{1}(\cdot) = (1/2) \|\mathbf{Y}_{h} - \mathbf{E}(\cdot)\mathbf{M}\|_{Q_{h}}^{2} \qquad \mathbf{U}_{1} = \mathbf{Z}\mathbf{A}_{x}$$

$$g_{2}(\cdot) = (1/2) \|\mathbf{Y}_{m} - \mathbf{A}_{\lambda}\mathbf{E}(\cdot)\|_{Q_{h}}^{2} \qquad \mathbf{U}_{2} = \mathbf{Z}$$

$$g_{3}(\cdot) = \phi_{\mathsf{VTV}}(\cdot) \qquad \mathbf{U}_{3} = \mathbf{Z}$$

Results: HySure in a HS+PAN simulated data set

Simulated HSI and PAN: $\mathbf{X} \in \mathbb{R}^{103 \times (512 \times 512)}$, d = 4, p = 10, spatial PSF: Gaussian 5 \times 5, $\sigma = 2$, iid noise, SNR_h = 30 dB, SNR_m = 40 dB

(a) Panchromatic image.

RESULTS FOR DATASET A (HSI+PAN FUSION).

	ERGAS	SAM	UIQI
GS	1.330	1.136	0.868
GSA	1.268	1.156	0.870
FIHS	1.788	1.456	0.863
PCA	1.451	1.149	0.865
BT	1.832	1.427	0.875
HPF	3.277	1.688	0.845
HySure	0.717	0.524	0.895

$$\begin{aligned} \mathsf{ERGAS}(\mathbf{Z}, \widehat{\mathbf{Z}}) &\stackrel{\text{def}}{=} 100 \frac{1}{S} \sqrt{\frac{1}{L_h} \sum_{l=1}^{L_h} \frac{\mathsf{MSE}(\mathbf{Z}_l; \widehat{\mathbf{Z}}_l;)}{\mu_{\widehat{\mathbf{Z}}_l}^2}} \\ \mathsf{SAM}(\mathbf{Z}, \widehat{\mathbf{Z}}) &\stackrel{\text{def}}{=} \frac{1}{n_m} \sum_{j=1}^{n_m} \arccos\left(\frac{\mathbf{Z}_{:j}^T \widehat{\mathbf{Z}}_{:j}}{\|\mathbf{Z}_{:j}\|_2 \|\widehat{\mathbf{Z}}_{:j}\|_2}\right) \end{aligned}$$

UIQI [Wang & Bovik, 03] combines Loss of correlation, constrast distortion, and luminance distrotion

Results: HySure in a HS+PAN semi-synthetic data set

Simulated HSI and PAN: $\mathbf{X} \in \mathbb{R}^{640 \times 340}$, d = 4, p = 10, spatial PSF: Gaussian 5×5 , $\sigma = 2$, iid noise, $SNR_h = 30 \text{ dB}$, $SNR_m = 40 \text{ dB}$

(a) Observed HSI (false (b) Observed panchromatic (c) HySure's result (false (d) BT's result (false color).
 BT - Brovey Transform method [Huang et al. 04]

Results: HySure in a HS+PAN semi-synthetic data set

Simulated HSI and PAN: $\mathbf{X} \in \mathbb{R}^{640 \times 340}$, d = 4, p = 10, spatial PSF: Gaussian 5×5 , $\sigma = 2$, iid noise, $\mathsf{SNR}_h = 30 \, \mathsf{dB}$, $\mathsf{SNR}_m = 40 \, \mathsf{dB}$

GSA - Gram-Schmidt adaptive [Aiazzi et al. 07]

Hyperspectral sharpening: dictionary-based regularization

Motivation: patch-based dictionaries learned from the (high spatial resolution) MS bands fit very well the HS bands

A path \mathbf{x}_i of the a HS band is well approximated by the dictionary atoms \mathbf{d}_i for $i\in\mathcal{S}_i$

$$\mathbf{x}_i \simeq \sum_{i \in \mathcal{S}_i} a_i \mathbf{d}_i \qquad \Rightarrow \qquad \mathbf{X} \simeq \mathcal{L}(\mathbf{D}, \mathbf{A}, \mathcal{S})$$

Hyperspectral sharpening: dictionary based regularization

HS-MS image fusion based on a sparse representation (HFSR) [Wei et al., 15]

$$\min_{\mathbf{Z},\mathbf{A}} (1/2) \left\| \mathbf{Y}_h - \mathbf{E} \mathbf{Z} \mathbf{A}_x \mathbf{M} \right\|_{Q_h}^2 + (1/2) \left\| \mathbf{Y}_m - \mathbf{A}_\lambda \mathbf{E} \mathbf{Z} \right\|_{Q_m}^2 + \tau \phi_{\mathsf{DL}}(\mathbf{Z},\mathbf{A})$$

where ${\bf Z}$ are representation coefficients of ${\bf X}$ with respect to ${\bf E},\,{\bf A}$ is the code for ${\bf X}$ with respect to the dictionary ${\bf D},$ and

$$\phi_{\mathsf{DL}}(\mathbf{Z}, \mathbf{A}) := \left\| \mathbf{E} \mathbf{Z} - \mathcal{L}(\mathbf{D}, \mathbf{A}, \mathcal{S}) \right\|_{F}^{2}$$

Algorithm 1: HFSR

Learn the dictionary using online learning [Mairal et al., 09] Compute the support Sfor $k = 0, 1, \dots$ do optimize wrt Z using SALSA use gradient descent wrt A

HS+MS fusion (subset of Pavia data set, $\mathbf{X} \in \mathbb{R}^{93 \times (128 \times 128)}, \, d=4, \, p=5$

From left to right and top to bottom: Reference; observed HS; observed MS; MAP, wavelet MAP; coupled nonnegative matrix factorization (CNMF); MMSE estimator; proposed method.

MAP -	[Hardie et al., 04		
wavelet MAP-	[Zhang et al., 09]		
CNMF -	[Yokoya et al., 12]		
MMSE -	[Qi et al., 12]		

Results: HFSR in the a Pavia subcene

HS+MS fusion

Methods	RMSE	UIQI	SAM	ERGAS	DD	Time
MAP [14]	1.148	0.9875	1.962	1.029	8.666	3
Wavelet MAP [17]	1.099	0.9885	1.849	0.994	8.349	75
CNMF [18]	1.119	0.9857	2.039	1.089	9.007	14
HMC [16]	1.011	0.9903	1.653	0.911	7.598	6003
Rough $ ilde{\mathbf{U}}$	1.136	0.9878	1.939	1.019	8.586	
Proposed	0.947	0.9913	1.492	0.850	7.010	282

[Hardie et al., 04] [Zhang et al., 09] [Yokoya et al., 12] [Qi et al., 12]

HS+PAN fusion

Methods	RMSE	UIQI	SAM	ERGAS	DD	Time
MAP [14]	1.857	0.9690	4.162	2.380	1.356	2
Wavelet MAP [17]	1.848	0.9697	4.191	2.354	1.360	55
CNMF [18]	1.964	0.9669	4.569	2.467	1.450	5
HMC [16]	1.748	0.9730	3.996	2.234	1.288	7828
Rough $ ilde{\mathbf{U}}$	1.853	0.9691	4.158	2.375	1.355	
Proposed	1.745	0.9731	3.948	2.231	1.281	252

HS fusion by sparse regression in the spectral domain

Rationale:

Suppose that we have access to a dictionary D = [d₁,...,d_K] with respect to which the spectral vectors x_i may be represented (e.g., mixing matrix, overcomplete dictionary):

$$\mathbf{x}_i = \mathbf{D} \boldsymbol{\alpha}_i^*$$

② Use the MS image recover the code $oldsymbol{lpha}_i, i=1,\ldots,n$

$$\widehat{\boldsymbol{\alpha}}_{i} = \arg\min_{\boldsymbol{\alpha}} \left\| \mathbf{y}_{m,i} - \mathbf{A}_{\lambda} \mathbf{D} \boldsymbol{\alpha} \right\|_{2}^{2} + \phi(\boldsymbol{\alpha})$$

Recover the HS vectors

$$\widehat{\mathbf{x}}_i = \mathbf{D}\widehat{\boldsymbol{\alpha}_i} \quad i = 1, \dots, n$$

(necessary condition) \$\alpha_i^*\$ can not be recovered if \$\|\alpha_i\|_0^* > L\$ (L is number of MS bands)

Dictionary learning methodologies:

- sparse code in the spectral domain [Charles et al., 11]
- linear unmixing [Zurita-Milla et. al, 06], [Kawakami et al.,11], [Licciardi et al.,14]
- locally low rank [Veganzones et al. 14. 15]

Couple matrix factorization. A related approach [Yokoya, et al., 12], [Huang et al., 14]

Aims at solving the couple pair of factorization problem:

$$\begin{split} \min_{\mathbf{E}} & \|\mathbf{Y}_h - \mathbf{E}\mathbf{Z}_h\|_F^2 & \text{s.t.:} \quad \mathbf{Z}_h = \mathbf{Z}\mathbf{A}_x \\ & \min_{\mathbf{Z}} & \|\mathbf{Y}_h - \mathbf{E}_m\mathbf{Z}\|_F^2 & \text{s.t.:} \quad \mathbf{E}_m = \mathbf{A}_\lambda \mathbf{E} \end{split}$$

with alternating optimization.

Hyperspectral pansharpening: a review ([Loncan et al., 15])

A comparison of eleven methods

Methods originally designed for MS pansharpening

Component substitution

CS, PCA, Gram-Schmidt (GS), GS Adaptive (GSA)

Multiresolution analysis

Smoothing Filter-based Intensity Modulation (SFIM) Generalized Laplacian Pyramid (MTF-GLP) MTF-GLP with High Pass Modulation (MTF-GLP-HPM)

Hybrid methods

Guided filter in the PCA domain (GFPCA)

Methods originally designed for MS pansharpening

Bayesian Methods

Naive Gaussian prior Sparsity promoting prior HySure

Matrix Factorization

(CNMF) Coupled Non-negative Matrix Factorization

Hyperspectral pansharpening: a review ([Loncan et al., 15])

CARACTERISTIC OF THE THREE DATASETS

dataset	dimensions	spatial res	Ν	instrument	
Moffett	PAN 185×395	20m	224	AVIRIS	
	HS 37×79	100m	224		
Camargue	PAN 500 \times 500	4m	195	НуМар	
	HS 100×100	20m	120		
Garons	PAN 400×400	4m	195	НуМар	
	HS 80×80	20m	120		

Mosfet performance indexes ([Loncan et al., 15])

Camargue performance indexes ([Loncan et al., 15])

Camargue data set

J. Bioucas Dias (IT. IST. ULisboa)

Part 3 - IPs in Hyperspectral Imaging

SFPT-GH. May. 2016

21 / 23

Garons performance indexes ([Loncan et al., 15])

Garons data set

Original and fused images ([Loncan et al., 15])

Fig. 6. Details of original and fused Camargue dataset HS image in the visible domain. (a) reference image, (b) interpolated HS image, (c) SFIM, (d) MTF-GLP-HPM, (e) GSA, (f) PCA, (g) GFPCA, (h) CNMF, (i) Bayesian Sparse, (j) HySure