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Hyperspectral sharpening

Observation model (A is separable)

Yh = XAxM+Ny, Ym = AλX+Nm

X ∈ RR×N

Yh ∈ RR×M - observed hyperspectral image
(M = N/d2 - d is the downsampling factor)

Ym ∈ RL×N - observed multispectral image

Ax ∈ RN×N - (usually a convolution)

Aλ ∈ RL×R - (spectral responses of the MS sensor )

M ∈ RN×N - (downsampling matrix)

Nh ∼MN (0R×M ,Ch, IM )

Nm ∼MN (0L×N ,Cm, IN )
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Hyperspectral sharpening

Hyperspectral sharpening contains a number of HSI subproblems:

Denoising: Ax = IN , M = IN , observation: Yh

Inpainting: Ax = IN , M is diagonal (a mask), observation: Yh

Superresolution: Ax is a lowpass �ler, M is a dowsampling operator;
observation: Yh

HS pansharpening: Ax is a lowpass �ler, M is a dowsampling operator,
observation Yh and Ym ∈ R1×N (a pancromatic image)

HS MSharpening: Ax ia a lowpass �ler, M is a dowsampling operator,
observation Yh and Ym ∈ RL×N (an MS image)
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Hyperspectral sharpening. Blurring operators [Simoes et. al, 14]

Illustrative example of blurring operators
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Hyperspectral sharpening variational formulation

What about the conditioning of the Hyperspectral sharpening (HSharp) problem?

Number of optimization variables: R×N

Number of measurements: R×M + L×N = (R/d2 + L)N

Hsharpening is ill-posed if L/R < 1− 1/d2, which is always the case
(example: HYPERION/IKONOS, L/R ' 0.02, 1− 1/d2 ' 0.9)

Typical variational formulation

min
X

(1/2)
∥∥Yh −XAxM

∥∥2
Qh

+ (1/2)
∥∥Ym −AλX

∥∥2
Qm

+ φS(X) + φLR(X)

where∥∥ · ∥∥2
Qh

:=
∥∥C−1/2h (·)

∥∥2
F
,

∥∥ · ∥∥2
Qm

:=
∥∥C−1/2m (·)

∥∥2
F

φS(·) is a spatial-spectral regularizer

φLR(·) is a low rank regularizer
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Hyperspectral sharpening with low rank hard constraint

HSIs spectral vectors live systematically in a low dimensional subspace

X = EZ, E ∈ RR×p, (p� R), Z ∈ Rp×N

E may be learned from Yh [B-D & Nascimento, 12]

Variational formulation with hard low rank constraint

min
Z

(1/2)
∥∥Yh −EZAxM

∥∥2
Qh

+ (1/2)
∥∥Ym −AλEZ

∥∥2
Qm

+ φS(Z)

Advantages:

The number of optimization variable reduces often by more than one order of
magnitude

there is no need for low rank regularization
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Hyperspectral sharpening algorithms: HySure

HySure (Hyperspectral Superesolution) [Simoes, B-D, &, Almeida, 14] solves the
optimization

min
Z

(1/2)
∥∥Yh −EZAxM

∥∥2
Qh

+ (1/2)
∥∥Ym −AλEZ

∥∥2
Qm

+ φVTV(Z)

where

E, Ax, and Aλ are learned from Yh and Ym prior to the estimation of Z

φVTV is the structured tensor TV for q = 2

The optimization is solved with SALSA by using the template:

g1(·) = (1/2)
∥∥Yh −E(·)M

∥∥2
Qh

U1 = ZAx

g2(·) = (1/2)
∥∥Ym −AλE(·)

∥∥2
Qh

U2 = Z

g3(·) = φVTV(·) U3 = Z
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Results: HySure in a HS+PAN simulated data set

Simulated HSI and PAN: X ∈ R103×(512×512), d = 4, p = 10, spatial PSF:
Gaussian 5× 5, σ = 2, iid noise, SNRh = 30 dB, SNRm = 40 dB
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Results: HySure in a HS+PAN synthetic data set
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Results: HySure in a HS+PAN semi-synthetic data set

Simulated HSI and PAN: X ∈ R640×340, d = 4, p = 10, spatial PSF: Gaussian
5× 5, σ = 2, iid noise, SNRh = 30 dB, SNRm = 40 dB

BT - Brovey Transform method [Huang et al. 04]
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Results: HySure in a HS+PAN semi-synthetic data set

Simulated HSI and PAN: X ∈ R640×340, d = 4, p = 10, spatial PSF: Gaussian
5× 5, σ = 2, iid noise, SNRh = 30 dB, SNRm = 40 dB

GSA - Gram-Schmidt adaptive [Aiazzi et al. 07]
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Hyperspectral sharpening: dictionary-based regularization

Motivation: patch-based dictionaries learned from the (high spatial resolution) MS
bands �t very well the HS bands

A path xi of the a HS band is well approximated by the dictionary atoms di for
i ∈ Si

xi '
∑
i∈Si

aidi ⇒ X ' L(D,A,S)
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Hyperspectral sharpening: dictionary based regularization

HS-MS image fusion based on a sparse representation (HFSR) [Wei et al., 15]

min
Z,A

(1/2)
∥∥Yh −EZAxM

∥∥2
Qh

+ (1/2)
∥∥Ym −AλEZ

∥∥2
Qm

+ τφDL(Z,A)

where Z are representation coe�cients of X with respect to E, A is the code for
X with respect to the dictionary D, and

φDL(Z,A) :=
∥∥EZ− L(D,A,S)

∥∥2
F

Algorithm 1: HFSR

Learn the dictionary using online learning [Mairal et al., 09]
Compute the support S
for k = 0, 1, . . . do

optimize wrt Z using SALSA
use gradient descent wrt A
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Results: HFSR in the a Pavia subcene
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HS fusion by sparse regression in the spectral domain

Rationale:

1 Suppose that we have access to a dictionary D = [d1, . . . ,dK ] with respect
to which the spectral vectors xi may be represented (e.g., mixing matrix,
overcomplete dictionary):

xi = Dα∗i

2 Use the MS image recover the code αi, i = 1, . . . , n

α̂i = argmin
α

∥∥ym,i −AλDα
∥∥2
2
+ φ(α)

3 Recover the HS vectors

x̂i = Dα̂i i = 1, . . . , n

4 (necessary condition) α∗i can not be recovered if ‖αi‖∗0 > L (L is number of
MS bands)
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HS fusion by sparse regression in the spectral domain

Dictionary learning methodologies:

sparse code in the spectral domain [Charles et al., 11]

linear unmixing [Zurita-Milla et. al, 06], [Kawakami et al.,11], [Licciardi et
al.,14]

locally low rank [Veganzones et al. 14. 15]

Couple matrix factorization. A related approach
[Yokoya, et al., 12], [Huang et al., 14]

Aims at solving the couple pair of factorization problem:

min
E
‖Yh −EZh‖2F s.t.: Zh = ZAx

min
Z
‖Yh −EmZ‖2F s.t.: Em = AλE

with alternating optimization.
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Hyperspectral pansharpening: a review ([Loncan et al. , 15])

A comparison of eleven methods
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Hyperspectral pansharpening: a review ([Loncan et al. , 15])
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Mosfet performance indexes ([Loncan et al. , 15])
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Camargue performance indexes ([Loncan et al. , 15])
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Garons performance indexes ([Loncan et al. , 15])
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Original and fused images ([Loncan et al. , 15])
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