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Hyperspectral imaging (and mixing) 



Hyperspectral unmixing

Alunite Kaolinite Kaolinite #2

VCA  [Nascimento, B-D, 2005]

AVIRIS of Cuprite, 

Nevada, USA

R – ch. 183 (2.10 m)

G – ch. 193 (2.20 m)

B – ch. 207 (2.34 m)
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 Unmixing

 Geometrical-based

 Statistical-based

 Sparse regression-based

Outline

 Signal subspace identification

 Linear

 Nonlinear

 Mixing models
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Linear mixing model (LMM)

Incident radiation interacts only 

with one component

(checkerboard type scenes)

Hyperspectral linear 

unmixing
Estimate
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Nonlinear mixing model

Intimate mixture (particulate media) Two-layers: canopies+ground

media parameters

Radiative transfer theory

material fractions single scattering double scattering 



Schematic view of the unmixing process

7CUHK - 2012
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Spectral linear unmixing (SLU)

Given N spectral vectors of dimension L:

Subject to the LMM:

ANC: abundance

nonnegative

constraint

ASC: abundance

sum-to-one

constraint
Determine:

 The mixing matrix M (endmember spectra)

 The fractional abundance vectors

SLU is a blind source separation problem (BSS)



Subspace identification

Reasoning underlying DR

1. Lightens the computational

complexity

2. Attenuates the noise power

by a factor of

Problem: Identify

the subspace generated by the columns of 
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RMT - [Kritchman, Nadler, 2009], [Cawse et al., 11], [Halimi et al., 16]
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Orthogonal Projection
Exact ML solution [Scharf, 91] (known p, i.i.d. Gaussian noise)

PCA - Principal component analysis (unknown p, i.i.d. noise)

NAPC - Noise adjusted principal components [Lee et al., 90]

MNF - Maximum noise fraction [Green et al., 88]

HFC - Harsanyi-Farrand-Chang [Harsanyi et al., 93]

NWHFC - [Chang, Du, 94]

HySime - Hyperspectral signal identification by minimum error [B-D, Nascimento, 08]

Subspace identification algorithms
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GENE - geometry-based estimation of number of endmembers [ArulMurugan, 13]



Inferring M inferring the vertices of the simplex

Geometrical view of SLU

probability simplex (    )

(p-1) - simplex
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Algorithms

Pure pixels

Classes of SLU problems

Vertex pursuit Facet estimation

Pixels in the facets Highly mixed

15

Well posed Well posed Ill-posed

Statistical inference

Sparse regression
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Unmixing frameworks

 Geometrical (blind)

Exploits parallelisms between the linear mixing model and

properties of convex sets

 Statistical (blind, semi-blind)

Approaches linear unmixing as a statistical inference problem

 Sparse regression (semi-blind)

Approaches linear unmixing as a sparse regression problem

Application scenarios: pure pixels, pixels in facets

Application scenarios: all

Application scenarios: all



PPI - [Boardman, 93]; N-FINDR - [Winter, 99]; IEA - [Neville et al., 99]; 

AMEE – [Plaza et al, 02]; SMACC – [Gruninger et al., 04]

VCA - [Nascimento, B-D, 03, 05]; SGA - [Chang et al., 06]

AVMAX, SVMAX - [Chan, et al., 11]; RNMF- [Gillis & Vavasis, 12,14]; 

SD-SOMP, SD-ReOMP - [Fu et al.13, 15]; 

Hard assumption

The data set contains at least one pure pixel of each material
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 Search endmembers in the data set

 Computationally light

Simplex vertex pursuit



Simplex vertex pursuit

N-FINDR

AVMAX

SVMAX

VCA
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Unmixing example

HYDICE sensor



Simplex facet estimation

Minimum-volume constrained nonnegative matrix

factorization (MVC-NMF) (inspired by NMF [Lee, Seung, 01])
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DPFT - [Craig, 90]; CCA - [Perczel et al., 89]   (seminal works on MVC) 

ICE - [Breman et al., 2004] (                                               ); 

SPICE - [Zare, Gader, 2007] (                                                                )

L1/2 - NMF  - [Qian, Jia, Zhou, Robles-Kelly, 11] (                                                   )

CoNMF  - [Li, B-D, Plaza, 12] (                                                                  )

volume regularizer

MVC-NMF - [Miao,Qi, 07]   (                                                    );  



Minimum volume simplex algorithms
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Optimization variable           

ASC

MVES [Chan, Chi, Huang, Ma, 2009]  

MVSA solves a sequence of quadratic programs

 The existence of pure pixels is a sufficient condition for exact

identification of the true endmembers

ANC

MVSA – Minimum volume simplex analysis  [Li, B-D, 08]

 Solves a sequence of linear programs by exploiting the cofactor

expansion of det (Q)



Robust minimum volume simplex algorithms: outliers

ASC

soft ANC

SISAL – Simplex identification via split augmented Lagrangian  [B-D,09]

 SISAL solves a sequence of convex subproblems using ADMM

19


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Example: data set contains pure pixels

Time: 

VCA   0.5 sec

SISAL 2 sec

20IWMSDF, SYSU- 2014



Data Set without Pure Pixels
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Real data: ArtImageDataA (converted into absorbance) 

Tiles 1,2 (‘Prussian blue’ + oil)

Tiles 15,16 (‘Ultramarine blue’ + oil)
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 determined by a small number of pixels; some may be outliers

 MVS – Computationally heavy

 PPI, N-FINDR, VCA, SGA, AMEE, SVMAX, AVMAX  

depend on the existence of pure pixels in the data

 Do not work in highly mixed scenarios

Geometrical Approaches: Limitations

24



Statistical approaches

 prior (Bayesian framework)

 observation model

 posterior  density

 inference

25



 Formally, SLU is a linear source separation problem

 Independent Component Analysis (ICA) come to mind

Spectral linear unmixing and ICA/IFA

ICA
 Fastica, [Hyvarinen & Oja, 2000]

 Jade, [Cardoso, 1997]

 Bell and Sejnowski, [Bell and Sejnowski , 1995]

IFA 
 IFA, [Moulines et al., 1997], [Attias, 1999]

26



Statistical approaches: ICA

Assumptions

2. Non-Gaussian sources

Endmembers compete for the same area

ICA does not apply [Nascimento, B-D, 2005]

Sources are Dependent

1. Fractional abundances (sources) are independent

27IWMSDF, SYSU- 2014



 data term associated with a noiseless LMM

 Dirichlet mixture model

 MDL based inference of the number of Dirichlet modes 

 MAP inference (GEM - algorithm)

DECA - [Nascimento, B-D 09, 14]

Representative Bayesian approaches
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[Parra et al., 00] 

[Moussaoui et al., 06,a,b], [Dobigeon et al., 09,a,b], [Dobigeon et al., 09,b],

[Arngreen, 11]

 data term associated with the LMM

 Uniform on the simplex

 conjugate prior distributions for some  unknown parameters

 Infer MMSE estimates by Markov chain Monte Carlo algorithms 



DECA – Dependent component analysis
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simulated data

29

parameters of the Dirichlet mixture
minimum volume term



DECA – Results on Cuprite

[Mittelman, Dobigeon, Hero, 12]

 data term associated with the LMM



 Latent label process enforcing 

adjacent pixels to have the same label

 spatial prior: tree-structured sticky 

hierarchical  Dirichlet process (SHDP)

 MMSE inference by MCMC

 Model order inference 

(number of endmembers)



Sparse regression-based SLU

0

0

0

0

0

0

 Unmixing: given y and A, find the sparsest solution of

 Advantage: sidesteps endmember estimation

 Disadvantage: Combinatorial problem !!!

 Spectral vectors can be expressed as linear combinations

of a few pure spectral signatures obtained from a 

(potentially very large) spectral library

[Iordache, B-D, Plaza, 11, 12]
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Striking result: In given circumstances, related with the

coherence among the columns of matrix A, BP(DN)  

yields the sparsest solution ([Donoho 06], [Candès et al. 06]).

Convex approximations to P0

35

CBPDN – Constrained basis pursuit denoising

Efficient solvers for CBPDN:  SUNSAL, CSUNSAL 
[B-D, Figueiredo, 10]

Equivalent problem
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Real data – AVIRIS Cuprite 

[Iordache, B-D, Plaza, 11, 12] 
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Real data – AVIRIS Cuprite 

[Iordache, B-D, Plaza, 11, 12] 
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Sparse reconstruction of hyperspectral data: Summary

Bad news: Hyperspectral libraries have poor RI constants

Surprising fact: Convex programs (BP, BPDN, LASSO, …) yield much

better empirical performance than non-convex state-of-the-art

competitors

Good news: Hyperspectral mixtures are highly sparse, very often p · 5 

Directions to improve hyperspectral sparse reconstruction

 Structured sparsity + subspace structure

(pixels in a give data set share the same support)

 Spatial contextual information

(pixels belong to an image)
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Total Variation of

i-th band

Constrained total variation sparse regression (CTVSR)

[Iordache, B-D, Plaza, 11]

[Zhao, Wang, Huang, Ng, Plemmons, 12]Related work

 convex generalizations of Total Variation based on the Structure Tensor
[Lefkimmiatis et al., 13]

Other Regularizers:

 vector total variation (VTV)! promotes piecewise smoo vectors [Bresson, 

Chan, 02], [Goldluecke et al., 12], [Yuan, Zhang, Shen, 12]

 sparse representation (2D, 3D) in the wavelet domain



Ilustrative examples with simulated data : SUnSAL-TV

Original data cube

Original abundance of EM5

SUnSAL estimate

SUnSAL-TV estimate
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multiple measurements
share the same support
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[Turlach, Venables, Wright, 2004][Iordache, B-D, Plaza, 11, 12]

Constrained colaborative sparse regression (CCSR)

Theoretical guaranties (superiority of multichanel) :  the probability of recovery 

failure decays exponentially in the number of channels. [Eldar, Rauhut, 11]
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Ilustrative examples with simulated data : CSUnSAL
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2) Compute                                          and define

the index set

MUSIC – Colaborative SR algorithm

[Kim, Lee, Ye, 2012]Related work: CS-MUSIC

(N < k and iid noise)

3) Solve the colaborative sparse regression optimization

[B-D, Figueiredo, 2012]

1) Estimate the signal subspace using, e.g.

the HySime algorithm.                       

MUSIC-CSR algorithm [Iordahe, B-D, Plaza, 2013]



acummulated

abundances
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MUSIC – CSR results

A – USGS  , Gaussian shaped noise, SNR = 25 dB, k = 5, m = 300, 
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Brief Concluding remarks

 Apply geometrical approaches when there are  data vectors near or

over the simplex facets

 Apply statistical methods in highly mixed data sets

 Apply sparse regression methods, if there exits a spectral library

for the problem in hand

42

 HU is a hard inverse problem (noise, bad-conditioned direct

operators, nonlinear mixing phenomena)

 HU calls for sophisticated math tools and framework (statistical

inference, optimization, machine learning)

 The research efforts devoted to non-linear mixing models are  

increasing

Linear mixing
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Spectral nonlinear unmixing (SNLU). Just a few topics

 Detecting nonlinear mixtures in polynomial post-nonlinear mixing    

model, [Altmann, Dobigeon, Tourneret, 11,13]

hypothesis test

 Bilinear unmixing model, [Fan, Hu, Miller, Li, 09], [Nascimento, B-D, 09],   

[Halimi, Altmann, Dobigeon, Tourneret, 11,11]

 Kernel-based unmixing algorithms to specifically account for intimate  

mixtures [Broadwater, Chellappa, Burlina, 07], [Broadwater, Banerjee, 09,10,  11], [Chen, 

Richard, Ferrari, Honeine, 13]

N. Dobigeon, J.-Y. Tourneret, C. Richard, J. C. M. Bermudez, S. McLaughlin and A. O. Hero, "Nonlinear

unmixing of hyperspectral images: models and algorithms," IEEE Signal Process. Magazine, vol. 31, no 1, 

pp. 82-94, 2014

R. Heylen,  M.Parente,  and P. Gader, "A review of nonlinear hyperspectral unmixing methods," 

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of , vol.7, no.6, 

pp.1844-1868, 2014



Very difficult (NP-hard)

Approximations to P0:

OMP – orthogonal matching pursuit [Pati et al., 2003] 

BP – basis pursuit [Chen et al., 2003]

BPDN – basis pursuit denoising

IHT (see [Blumensath, Davis, 11], [Kyrillidis, Cevher, 12])

Problem – P0

(library,                     , undetermined system)
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Sparse regression-based SLU 


