European Hyperspectral Explorer: HYPEX-2

Jo

Monitoring anthropogenic influences in critical zones

PI Briottet Xavier

HY

ASNER G. (Carnegie Institution for Science, USA, SQ1), BAJJOUK T. (IFREMER, France, SQ3), CARRERE V. (Univ. of Nantes, France, SQ2-4),
CHABRILLAT S. (GFZ, Germany, SQ2), CHAMI M. (Univ. Pierre et Marie Curie, France, SQ3), CHANUSSOT J., (GIPSA-Lab, Fr), DEKKER A. (Univ. of Queensland, Australia, SQ3), DELACOURT C. (Univ. of Bretagne Occidentale, France, SQ3), FERET J.-B. (Irstea, France, SQ1), FOUCHER P.-Y.
(ONERA, France, SQ4), SANTOS M. J. (Utrecht Uni., NI), GAMBA P. (Univ. of Pavia, Italy, SQ4), GEGE P. (DLR, Germany, SQ3-4), GOMEZ C. (IRD, France, SQ2), JACQUEMOUD S. (Univ. Paris Diderot, France, SQ1-2), LEFEVRE M.J. (CNES), LELONG C. (Cirad, France, SQ1), LOPEZ S. (Univ. of Las Palmas de Gran Canaria, Spain), MARION R. (CEA, France, SQ2-4), McKEE D. (Univ. of Strathclyde, Scotland, SQ3), MINGHELLI A. (Univ. of Toulon, France, SQ3), ROCCHINI D. (University of Trento, Italy, SQ1), SANTOS M.-J. (Utrecht Univ., Netherlands, SQ1), SCHAEPMAN M. (Univ. of Zurich, Switzerland, SQ1), SCHMID T. (CIEMAT, Spain, SQ2), SHEEREN D. (ENSAT, France, SQ1), SHIMONI M. (RMA, Belgium, SQ4), SKIDMORE A. (ITC, Netherlands, SQ1), SOMERS B. (KU Leuven, Belgium, SQ1), STENBERG B. (Swedish Univ. of Agricultural Sciences, Sweden, SQ2), E. Vaudour (AgroParitech, Fr), WEBER C. (TETIS, France, SQ4)

return on innovation

From critical zone to biodiversity

Critical interface from

shallow water up to vegetation canopy where stands terrestrial life (@National Research Council, USA 2001)

Understanding the functioning of critical zones requires a **multidisciplinary approach**

Seaview Survey

THE FRENCH AEROSPACE LAB

Anthropogenic activity causes accelerating erosion of biodiversity

Main drivers contributing to this loss: invasions, pollution, resource (over-) utilization, climate, and land use (cf Millennium Ecosystem Assessment)

Knowledge and information gaps:

- Knowledge on spatial distribution of biodiversity
- Understanding of complex interaction between biodiversity, environment & human activities

Essential Biodiversity Variables (EBV) defined by GEO BON

Used to report and manage biodiversity changes at global scale, inform about species distribution, plant traits, community composition, ecosystem structure and function

Remote Sensing

Appropriate source of information for monitoring EBVs (Rose et al., 2013)

Jetz et al. (2016) "Monitoring plant functional diversity from space" Nature Plants

ONERA THE FRENCH AEROSPACE LAB

Knowledge and information gaps

- Knowledge on spatial distribution of biodiversity
- Understanding of complex interaction between biodiversity, environment & human activities

Essential Biodiversity Variables (EBV) defined by GEO BON

Used to report and manage biodiversity changes at global scale, inform about species distribution, plant traits, community composition, ecosystem structure and function

Remote Sensing

Appropriate source of information for monitoring EBVs (Rose et al., 2013)

Existing or scheduled space missions can contribute (Sentinel-2, Landsat, Hyperion, EnMAP) but **no individual mission is combining:**

- Imaging spectroscopy species discrimination, morphological and physiological traits, leaf chemistry
- High temporal revisit biodiversity monitoring, sources of degradation
- High spatial resolution fragmented & heterogeneous ecosystems, gradients of biodiversity

....HYPEX-2 answer

Objective: fine-scale monitoring of surface including natural and anthropogenized systems, in order to track the influence of environmental changes induced by human activity on the spatial and temporal evolution of species assemblages, including their traits and composition.

Four scientific questions:

SQ1 - How does **functional diversity of vegetation** respond to anthropogenic and climatic influence?

SQ2 - What is the biodiversity, water quality and bathymetry of selected shallow water test areas? How much anthropogenic activities impact **coastal and inland waters biodiversity**?

Main drivers for mission specifications

SQ3 - What is the **impact of management practices on environmental processes** such as soil infiltration, surface retention, runoff and erosion?

SQ4 - How do **urban materials and industrial pollution** impact on vulnerable surroundings?

HYPEX-2 only focuses on specific hot spots (fragmented / with a high gradient)

SQ1 - How does functional diversity of vegetation respond to anthropogenic and climatic influence?

Science Team: FERET J.-B.. (Irstea, Fr), JACQUEMOUD S. (IPGP, Fr), ASNER G. (Carnegie Institution for Science, USA), CHAVE J (CNRS, Fr), LUQUE S. (Irstea, Fr), LELONG C. (Cirad, Fr), ROCCHINI D. (University of Trento, It), SCHAEPMAN M. (Univ. of Zurich, Remote Sensing Laboratories, CH), SHEEREN D. (ENSAT, Fr), SANTOS M.-J. (Utrecht Univ., NI), SKIDMORE A. (ITC, NI), SOMERS B. (KULeuven, Be)

Main variables to be estimated: Taxonomic & functional diversity, spatial distribution of species

assemblages, phenological metrics

- High spectral resolution: 10 nm in VIS-NIR-SWIR,
- → discrimination of canopy traits and individual species, leaf chemistry (pigments/water)
- High spatial resolution: < 10 m
- \rightarrow Tree crown for dominant individuals, groups of individuals
- High temporal resolution: < 10 days
- → Seasonal and annual variations of vegetation properties (phenology, stress); change in species composition

Ecosystem types: Tropical forest, temperate forest, temperate grassland, alpine forest, savanna, cropland, tundra, shrub land and agriculture, urban vegetation

Additional variables: indicators of ecosystem functioning, assimilation product

Optimal detection of invasive species (Ustin & Gamon, 2008)

Coupling leaf, canopy and atmosphere models (Schaepman et al., RSE 2009)

SQ2 - What is the biodiversity, water quality and bathymetry of selected shallow water test areas? How much anthropogenic activities impacts **coastal and inland waters biodiversity**?

Science Team: DELACOURT C. (Institut Universitaire Européen de la Mer Univ. Brest, Fr), CHAMI M. (Laboratoire d'Océanographie de Villefranche, Fr), McKEE D. (Univ. of Strathclyde, Sc), BAJJOUK T. (IFREMER, Fr), GEGE P. (DLR, Ge), MINGHELLI A. (LSIS, Univ. Toulon, Fr), A. DEKKER (CSIRO, Au)

Main variable to be estimated: Species identification, spatial distribution of species assemblages, monitoring

- High spectral resolution: 10 nm in VIS-NIR,
- →Species discrimination
- High spatial resolution: < 10 m
- → Spatial heterogeneity of sea floor composition and vegetation coverage (e.g. Marine Protected Area)
- High temporal resolution: < 10 days
- \rightarrow Habitats monitoring: seasonal and annual cycles

Ecosystem types: shallow coral reef, seagrass meadow, estuaries, lake **Additional variables:** Water composition, depth of shallow water

Database of MERIS reference spectra, ESA

Alvain et al. (2008)

HYF

SQ3 - What is the impact of management practices on environmental processes such as soil infiltration, surface retention, runoff and erosion?

Science Team: GOMEZ C. (IRD, Fr), CHABRILLAT S. (GFZ, Ge), SCHMID T. (CIEMAT, Sp), STENBERG B. (Swedish Univ. of Agricultural Sciences, Sw), MARION R. (CEA, Fr), CARRERE V. (LPGN, Fr), E. VAUDOUR(AgroParisTech, Fr)

Main variables to be estimated: top soil properties (Clay, soil organic carbon, CaCO₃, iron), dry vegetation coverage, soil moisture

 High spectral resolution: 10 nm in VIS-NIR-SWIR, Texture, mineralogy,

HYF

ONERA THE FRENCH APPOSPACE IA

- High spatial resolution: < 10 m
- \rightarrow Dry vegetation coverage, soil properties
- High temporal resolution: < 10 days
- \rightarrow Humidity, vegetation coverage

Ecosystem types: arid and semi-arid environment, natural areas and agricultural fields

Additional variables: mineralogy for exploration and resources mapping, mining and industrial waste pollution

SQ4 - How do urban materials and industrial pollution impact on vulnerable surrounding?

Science Team: GAMBA P. (Univ. of Pavia, It), WEBER C. (CNRS, Univ. of Strasbourg, Fr), SHIMONI M. (RMA, Be), BRIOTTET X. (ONERA, Fr), MARION R. (CEA, Fr), FOUCHER P.-Y. (ONERA, Fr)

Main variable to be estimated: Surface material composition (biological and artificial materials) and abundances.

- High spectral resolution: 10 nm in VIS-NIR-SWIR, Soil properties discrimination, species group
- High spatial resolution: 5-10 m
- \rightarrow Geometric discrimination of man-made materials
- High temporal resolution: < 10 days
- \rightarrow Urban sprawl, urban vegetation monitoring

Ecosystem types: urban/rural gradient, industrial brownfields **Additional variables:** gases/aerosols of industrial plants, urban local climate zone, litter/debris mapping (such as HC-bearing plastics)

HY

HYPEX-2 Main Characteristics

Satellite	Mass: ~400 kg Helio-synchronous orbit: 500km
Launch compatibility	Vega
Payload	Mass: 70-100 kg / Power: 150W
Spectral channel	GSD: 8 m / Swath: 8 km / typical SNR VIS > 250, NIR > 200, SWIR > 100
Spectral resolution / spectral range	<14 nm / 0.4 – 2.5 µm
Panchromatic channel	GSD: about 2 m / Swath 8 km
Revisit period (±60° in latitude)	 ± 20° across-track imaging: 5 days Global coverage
Accessibility	Permanent acquisition over ~100 hot spot areas
Link to Ground	X-Band link at 160 Mbps (with ground or mobile stations)
Lifetime	3 to 5 years

TRL > 5 Estimated cost: ~ 150 Meuros On going studies with TAS, ADS Supported by CNES

ONERA

THE FRENCH AEROSPACE LAB

SQ1 - How does **functional diversity of vegetation** respond to anthropogenic and climatic influence?

SQ2 - What is the biodiversity, water quality and bathymetry of selected shallow water test areas? How much anthropogenic activities impact **coastal and inland waters biodiversity**?

THANK YOU FOR YOUR ATTENTION

SQ3 - What is the **impact of management practices on environmental processes** such as soil infiltration, surface retention, runoff and erosion?

SQ4 - How do **urban materials and industrial pollution impact** on vulnerable surroundings?