Collaborative Total Variation for Hyperspectral Pansharpening

Mauro Dalla Mura

mauro.dalla-mura@gipsa-lab.grenoble-inp.fr

GIPSA-Lab, Grenoble Institute of Technology, France

SFPT-GH Brest, 10 May 2017

- Addesso Paolo, University of Salerno, Italy
- Condat Laurent, GIPSA-lab, CNRS, France
- Restaino Rocco, University of Salerno, Italy
- Vivone Gemine, University of Salerno, Italy
- Picone Daniele, University of Salerno, Italy
- Chanussot Jocelyn, GIPSA-lab, Grenoble Institute of Technology, France

Pansharpening

- Hyperspectral Pansharpening based on Collaborative Total Variation
- 3 Experimental results on denoising
- Experimental results on pansharpening
- 5 Conclusions

三日 のへの

《曰》 《圖》 《圖》 《圖》

What is pansharpening?

Pansharpening: Sharpening (i.e., enhancing) a multi-/hyper-spectral image with a panchromatic one.

Panchromatic (PAN) image

Multispectral (MS) image

What is pansharpening?

Pansharpened (PS) image

・ロト・西ト・山下・山下・山下・

Issues

- Spatial details that are present in the PAN appear blurred in the MS channels \rightarrow due to the different spatial resolution

PAN

PS

Issues

- Spatial details that are present in the PAN appear blurred in the MS channels \rightarrow due to the different spatial resolution
- Details appear with variable intensity in the different spectral channels according to their spectral signature

PAN

PS

Issues

- Spatial details that are present in the PAN appear blurred in the MS channels \rightarrow due to the different spatial resolution
- Details appear with variable intensity in the different spectral channels according to their spectral signature
- Retrieving the specific spectral contributions is difficult due to the absent spectral information in the PAN

PAN

PS

• Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS

Notation

 $\overrightarrow{\text{MS}}$ result of pansharpening $\overrightarrow{\text{MS}}$ MS image upscaled to the size of the PAN \mathbf{P} the PAN image \mathbf{P}_{D} spatial details of the PAN

• Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

k denotes the k-th spectral channel over N bands
g = [g₁,...,g_k,...,g_N] are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- **(**) Component Substitution $(CS) \rightarrow$ the details are estimated considering the MS
- @ Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

- Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS
- Notation
- $\overline{\mathbf{MS}}$ result of pansharpening
- MS MS image upscaled to the size of the PAN
 - **P** the **PAN** image
 - \mathbf{P}_D spatial details of the PAN
- Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

• k denotes the k-th spectral channel over N bands • $\mathbf{g} = [g_1, \dots, g_k, \dots, g_N]$ are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- $\textcircled{O} Component Substitution (CS) \rightarrow the details are estimated considering the MS$
- @ Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

(日) (四) (日) (日) (日)

• Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS

Notation

MS result of pansharpening

 ${f MS}$ MS image upscaled to the size of the PAN

P the PAN image

 P_D spatial details of the PAN

• Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

• k denotes the k-th spectral channel over N bands • $\mathbf{g} = [g_1, \dots, g_k, \dots, g_N]$ are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- **()** Component Substitution (CS) \rightarrow the details are estimated considering the MS
- @ Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

Mauro Dalla Mura (GIPSA-lab)

ъ

315

- Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS
- Notation
 - $\widehat{\mathbf{MS}}$ result of pansharpening $\widehat{\mathbf{MS}}$ MS image upscaled to the size of the PAN P the PAN image \mathbf{P}_D spatial details of the PAN
- Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

• k denotes the k-th spectral channel over N bands • $\mathbf{g} = [g_1, \dots, g_k, \dots, g_N]$ are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- $\textcircled{O} Component Substitution (CS) \rightarrow the details are estimated considering the MS$
- @ Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

- Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS
- Notation
 - **MS** result of pansharpening
 - MS MS image upscaled to the size of the PAN
 - **P** the **PAN** image

 P_D spatial details of the PAN

Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

k denotes the k-th spectral channel over N bands
g = [g₁,...,g_k,...,g_N] are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- **O** Component Substitution $(CS) \rightarrow$ the details are estimated considering the MS
- @ Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

Mauro Dalla Mura (GIPSA-lab)

- Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS
- Notation
 - $\overline{\mathbf{MS}}$ result of pansharpening
 - MS MS image upscaled to the size of the PAN
 - **P** the **PAN** image
 - \mathbf{P}_D spatial details of the PAN

Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

k denotes the k-th spectral channel over N bands
g = [g₁,...,g_k,...,g_N] are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- **(**) Component Substitution (CS) \rightarrow the details are estimated considering the MS
- ② Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

- Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS
- Notation
 - MS result of pansharpening
 - MS MS image upscaled to the size of the PAN
 - **P** the **PAN** image
 - \mathbf{P}_D spatial details of the PAN
- Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

k denotes the k-th spectral channel over N bands
g = [g₁,...,g_k,...,g_N] are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- **O** Component Substitution $(CS) \rightarrow$ the details are estimated considering the MS
- @ Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

Mauro Dalla Mura (GIPSA-lab)

- Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS
- Notation
 - MS result of pansharpening
 - MS MS image upscaled to the size of the PAN
 - **P** the **PAN** image
 - \mathbf{P}_D spatial details of the PAN
- Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

• k denotes the k-th spectral channel over N bands • $g = [a_1, \dots, a_N]$ are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- **O** Component Substitution $(CS) \rightarrow$ the details are estimated considering the MS
- @ Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

Mauro Dalla Mura (GIPSA-lab)

Image: A math a math

• Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS

Notation

- $\overline{\mathbf{MS}}$ result of pansharpening
- MS MS image upscaled to the size of the PAN
 - **P** the **PAN** image
- \mathbf{P}_D spatial details of the PAN

Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

- $\bullet~k$ denotes the k-th spectral channel over N bands
- $\mathbf{g} = [g_1, \ldots, g_k, \ldots, g_N]$ are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- **(**) Component Substitution (CS) \rightarrow the details are estimated considering the MS
- @ Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

- Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS
- Notation
 - **MS** result of pansharpening
 - MS MS image upscaled to the size of the PAN
 - ${\bf P}$ the PAN image
 - \mathbf{P}_D spatial details of the PAN
- Pansharpening

$$\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$$

- $\bullet~k$ denotes the k-th spectral channel over N bands
- $\mathbf{g} = [g_1, \ldots, g_k, \ldots, g_N]$ are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- $\texttt{O} \ \text{Component Substitution (CS)} \rightarrow \text{the details are estimated considering the MS}$
- @ Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Classical approach: extract the spatial details from the PAN that are not resolved in the MS and inject them (opportunely modulated) into the MS
- Notation
 - **MS** result of pansharpening
 - MS MS image upscaled to the size of the PAN
 - ${\bf P}$ the PAN image
 - \mathbf{P}_D spatial details of the PAN
- Pansharpening

 $\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k \mathbf{P}_D,$

- $\bullet~k$ denotes the k-th spectral channel over N bands
- $\mathbf{g} = [g_1, \ldots, g_k, \ldots, g_N]$ are the injections gains

Two typical approaches are employed according to the technique used for estimating \mathbf{P}_D :

- $\textbf{O} \ \text{Component Substitution (CS)} \rightarrow \text{the details are estimated considering the MS}$
- **2** Multi-Resolution Analysis (MRA) \rightarrow the details are estimated by filtering the PAN

・ロト ・ 同ト ・ ヨト ・ ヨト

$$\mathbf{P}_D = \mathbf{P} - \mathbf{I}_L$$

• \mathbf{I}_L a monochromatic image obtained by the weighted linear composition of the MS upsampled bands obtained as

$$\mathbf{I}_L = \sum_{k=1}^N w_k \widetilde{\mathbf{MS}}_k.$$

- Equivalent implementation of CS (under linear hypothesis):
 - perform a spectral transformation of the MS into another feature space in which the spatial and spectral contributions are more separated
 - substitute the first component in the transformed space with the PAN after histogram matching
 - **apply the reverse transformation to produce the sharpened MS**

< < >> < <</>

$$\mathbf{P}_D = \mathbf{P} - \mathbf{I}_L$$

 $\bullet~\mathbf{I}_L$ a monochromatic image obtained by the weighted linear composition of the MS upsampled bands obtained as

$$\mathbf{I}_L = \sum_{k=1}^N w_k \widetilde{\mathbf{MS}}_k.$$

- Equivalent implementation of CS (under linear hypothesis):
 - perform a spectral transformation of the MS into another feature space in which the spatial and spectral contributions are more separated
 - substitute the first component in the transformed space with the PAN after histogram matching
 - **apply the reverse transformation to produce the sharpened MS**

Image: A matrix

$$\mathbf{P}_D = \mathbf{P} - \mathbf{I}_L$$

• \mathbf{I}_L a monochromatic image obtained by the weighted linear composition of the MS upsampled bands obtained as

$$\mathbf{I}_L = \sum_{k=1}^N w_k \widetilde{\mathbf{MS}}_k.$$

- Equivalent implementation of CS (under linear hypothesis):
 - perform a spectral transformation of the MS into another feature space in which the spatial and spectral contributions are more separated
 - substitute the first component in the transformed space with the PAN after histogram matching
 - 3) apply the reverse transformation to produce the sharpened MS

$$\mathbf{P}_D = \mathbf{P} - \mathbf{I}_L$$

 $\bullet~\mathbf{I}_L$ a monochromatic image obtained by the weighted linear composition of the MS upsampled bands obtained as

$$\mathbf{I}_L = \sum_{k=1}^N w_k \widetilde{\mathbf{MS}}_k.$$

- Equivalent implementation of CS (under linear hypothesis):
 - perform a spectral transformation of the MS into another feature space in which the spatial and spectral contributions are more separated
 - substitute the first component in the transformed space with the PAN after histogram matching
 - 3 apply the reverse transformation to produce the sharpened MS

$$\mathbf{P}_D = \mathbf{P} - \mathbf{I}_L$$

• \mathbf{I}_L a monochromatic image obtained by the weighted linear composition of the MS upsampled bands obtained as

$$\mathbf{I}_L = \sum_{k=1}^N w_k \widetilde{\mathbf{MS}}_k.$$

- Equivalent implementation of CS (under linear hypothesis):
 - perform a spectral transformation of the MS into another feature space in which the spatial and spectral contributions are more separated
 - **2** substitute the first component in the transformed space with the PAN after histogram matching
 - 3 apply the reverse transformation to produce the sharpened MS

$$\mathbf{P}_D = \mathbf{P} - \mathbf{I}_L$$

• \mathbf{I}_L a monochromatic image obtained by the weighted linear composition of the MS upsampled bands obtained as

$$\mathbf{I}_L = \sum_{k=1}^N w_k \widetilde{\mathbf{MS}}_k.$$

- Equivalent implementation of CS (under linear hypothesis):
 - perform a spectral transformation of the MS into another feature space in which the spatial and spectral contributions are more separated
 - **2** substitute the first component in the transformed space with the PAN after histogram matching
 - 3 apply the reverse transformation to produce the sharpened MS

イロト イポト イヨト イヨ

MultiResolution Analysis

• MRA is based on the extraction of the spatial details present in the PAN (and not fully resolved in the multispectral one) and their subsequent injection to the MS bands

$$\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k (\mathbf{P} - \mathbf{P}_L)$$

• Thus for MRA techniques the details are extracted as

$$\mathbf{P}_D = \mathbf{P} - \mathbf{P}_L,$$

- \mathbf{P}_L a low pass version of the PAN image obtained by spatially filtering \mathbf{P} (e.g., $\mathbf{P}_L = \mathbf{P} * h$, with h a mask implementing a low-pass filter and * the product of convolution)
- The spatial details can be extracted by several approaches as using an average filter or multiresolution decompositions of the image based on Laplacian pyramids, or wavelet/contourlet operators
- This paradigm has been also called Amélioration de la Résolution Spatiale par Injection de Structures (ARSIS)

イロト イヨト イヨト イヨ

MultiResolution Analysis

• MRA is based on the extraction of the spatial details present in the PAN (and not fully resolved in the multispectral one) and their subsequent injection to the MS bands

$$\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k(\mathbf{P} - \mathbf{P}_L)$$

• Thus for MRA techniques the details are extracted as

$$\mathbf{P}_D = \mathbf{P} - \mathbf{P}_L,$$

- \mathbf{P}_L a low pass version of the PAN image obtained by spatially filtering \mathbf{P} (e.g., $\mathbf{P}_L = \mathbf{P} * h$, with h a mask implementing a low-pass filter and * the product of convolution)
- The spatial details can be extracted by several approaches as using an average filter or multiresolution decompositions of the image based on Laplacian pyramids, or wavelet/contourlet operators
- This paradigm has been also called *Amélioration de la Résolution Spatiale par* Injection de Structures (ARSIS)

イロト イヨト イヨト イヨト

• MRA is based on the extraction of the spatial details present in the PAN (and not fully resolved in the multispectral one) and their subsequent injection to the MS bands

$$\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k (\mathbf{P} - \mathbf{P}_L)$$

• Thus for MRA techniques the details are extracted as

$$\mathbf{P}_D = \mathbf{P} - \mathbf{P}_L,$$

- \mathbf{P}_L a low pass version of the PAN image obtained by spatially filtering \mathbf{P} (e.g., $\mathbf{P}_L = \mathbf{P} * h$, with h a mask implementing a low-pass filter and * the product of convolution)
- The spatial details can be extracted by several approaches as using an average filter or multiresolution decompositions of the image based on Laplacian pyramids, or wavelet/contourlet operators
- This paradigm has been also called Amélioration de la Résolution Spatiale par Injection de Structures (ARSIS)

イロト イヨト イヨト イヨト

• MRA is based on the extraction of the spatial details present in the PAN (and not fully resolved in the multispectral one) and their subsequent injection to the MS bands

$$\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k(\mathbf{P} - \mathbf{P}_L)$$

• Thus for MRA techniques the details are extracted as

$$\mathbf{P}_D = \mathbf{P} - \mathbf{P}_L,$$

- \mathbf{P}_L a low pass version of the PAN image obtained by spatially filtering \mathbf{P} (e.g., $\mathbf{P}_L = \mathbf{P} * h$, with h a mask implementing a low-pass filter and * the product of convolution)
- The spatial details can be extracted by several approaches as using an average filter or multiresolution decompositions of the image based on Laplacian pyramids, or wavelet/contourlet operators
- This paradigm has been also called Amélioration de la Résolution Spatiale par Injection de Structures (ARSIS)

イロト イヨト イヨト イヨト

• MRA is based on the extraction of the spatial details present in the PAN (and not fully resolved in the multispectral one) and their subsequent injection to the MS bands

$$\widehat{\mathbf{MS}}_k = \widetilde{\mathbf{MS}}_k + g_k(\mathbf{P} - \mathbf{P}_L)$$

 $\bullet\,$ Thus for MRA techniques the details are extracted as

$$\mathbf{P}_D = \mathbf{P} - \mathbf{P}_L,$$

- \mathbf{P}_L a low pass version of the PAN image obtained by spatially filtering \mathbf{P} (e.g., $\mathbf{P}_L = \mathbf{P} * h$, with h a mask implementing a low-pass filter and * the product of convolution)
- The spatial details can be extracted by several approaches as using an average filter or multiresolution decompositions of the image based on Laplacian pyramids, or wavelet/contourlet operators
- This paradigm has been also called *Amélioration de la Résolution Spatiale par* Injection de Structures (ARSIS)

イロン イヨン イヨン イヨン

- $\bullet\,$ For both CS and MRA families, \mathbf{P}_D has to be injected into the interpolated MS bands
- The injection is done by weighting \mathbf{P}_D by the coefficients g_k
- g_k are in general different for each band
- "global" pansharpening techniques consider the same g_k for all the pixels in each channel
- "local" approaches allow g_k to vary locally in the spatial domain of the image

- $\bullet\,$ For both CS and MRA families, \mathbf{P}_D has to be injected into the interpolated MS bands
- The injection is done by weighting \mathbf{P}_D by the coefficients g_k
- g_k are in general different for each band
- "global" pansharpening techniques consider the same g_k for all the pixels in each channel
- "local" approaches allow g_k to vary locally in the spatial domain of the image

- $\bullet\,$ For both CS and MRA families, \mathbf{P}_D has to be injected into the interpolated MS bands
- The injection is done by weighting \mathbf{P}_D by the coefficients g_k
- g_k are in general different for each band
- "global" pansharpening techniques consider the same g_k for all the pixels in each channel
- "local" approaches allow g_k to vary locally in the spatial domain of the image

- $\bullet\,$ For both CS and MRA families, \mathbf{P}_D has to be injected into the interpolated MS bands
- The injection is done by weighting \mathbf{P}_D by the coefficients g_k
- g_k are in general different for each band
- "global" pansharpening techniques consider the same g_k for all the pixels in each channel
- "local" approaches allow g_k to vary locally in the spatial domain of the image

- $\bullet\,$ For both CS and MRA families, \mathbf{P}_D has to be injected into the interpolated MS bands
- The injection is done by weighting \mathbf{P}_D by the coefficients g_k
- g_k are in general different for each band
- "global" pansharpening techniques consider the same g_k for all the pixels in each channel
- "local" approaches allow g_k to vary locally in the spatial domain of the image

Hyperspectral Pansharpening [Simoes16]

Notation

- HS image $\mathbf{H} \in \mathbb{R}^{C \times N_{HS}}$, with C bands and N_{HS} pixels
- PAN image $\mathbf{P} \in \mathbb{R}^{1 \times N_{PAN}}$, $N_{PAN} = \rho^2 N_{HS}$, where $\rho > 1$ is the resolution ratio
- Goal: high spatial and spectral resolution image $\mathbf{Z} \in \mathbb{R}^{C \times N_{PAN}}$

HS model

$\mathbf{H} = \mathbf{ZBM} + \mathbf{N}_h$

- $\mathbf{B} \in \mathbb{R}^{N_{PAN} \times N_{PAN}}$ blur
- $\mathbf{M} \in \mathbb{R}^{N_{PAN} \times N_{HS}}$ subsampling
- $\mathbf{N}_h \in \mathbb{R}^{C \times N_{HS}}$ (i.i.d.) zero-mean Gaussian noise with variance σ_{HS}^2

PAN model

$\mathbf{P}=\mathbf{R}\mathbf{Z}+\mathbf{N}_p$

• $\mathbf{R} \in \mathbb{R}^{1 \times C}$ is related to the Relative Spectral Response of PAN

• $\mathbf{N}_p \in \mathbb{R}^{1 \times N_{PAN}}$ (i.i.d.) zero-mean Gaussian noise with variance σ_{PAN}^2

- **Z** is a hyperspectral image $\mathbf{H} \in \mathbb{R}^{C \times N_{PAN}}$, with C bands and N_{PAN} pixels (organized lexicographically order)
- Z lives in a subspace of dimensionality lower than C
- $\bullet \Rightarrow \text{Factorize } \mathbf{Z} \text{ as } \mathbf{Z} = \mathbf{E} \mathbf{X} \text{ with }$
 - **E** is the set of basis (with cardinality $L \leq C$) spanning the subspace of **Z**
 - ${\bf X}$ are the representation coefficients
- Factorization
 - representation on a subspace e.g., Singular Value Decomposition
 - representation on a simplex (spectral unmixing) (e.g., Vertex Component Analysis [Nascimento05] + FCLSU)
 - . . .

・ロト ・ 同ト ・ ヨト ・ ヨト

With
$$\mathbf{Z} = \mathbf{E}\mathbf{X}$$

minimize $\frac{1}{2} \|\mathbf{H} - \mathbf{E}\mathbf{X}\mathbf{B}\mathbf{M}\|_F^2 + \frac{\lambda_m}{2} \|\mathbf{P} - \mathbf{R}\mathbf{E}\mathbf{X}\|_F^2 + \lambda_{\varphi}\varphi(\mathbf{X})$
where $\|\cdot\|_F$ is the Frobenius norm and $\lambda_m = 1$

Mauro Dalla Mura (GIPSA-lab) Collaborative CTV pansharpening Brest, 10 May 2017 13 / 32

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Total variation [Rudin92]

$$TV(X) = \int_{\Omega} |\nabla X(x)| dx$$

for a given a scalar function $X : (\Omega \subseteq \mathbb{R}^n) \to \mathbb{R}$ Used as a regularizer in many optimization problems in imaging. For example:

$$\underset{X}{\text{minimize}} \quad ||X||_{TV} + \frac{\lambda}{2}||X - X^0||_2^2$$

Total variation for color images

For a multivariate image $\mathbf{X} : (\Omega \subseteq \mathbb{R}^n) \to \mathbb{R}^m$ [Blomgren98] proposed

$$TV_{n,m}(\mathbf{X}) = \sqrt{\sum_{i=1}^{m} [TV_{n,1}(\mathbf{X}_i)]^2}$$

However other alternative definitions are possible.

Collaborative Total Variation (CTV)

Literature	Continuous Formulation	Collaborative TV
Д	$\sum_{k=1}^{C} \int_{\Omega} \sqrt{(\partial_x u_k(x))^2 + (\partial_y u_k(x))^2} dx$	$\ell^{2,1,1}(der,pix,col)$
Anisotropic variant	$\sum_{k=1}^{C} \int_{\Omega} \left(\left \partial_{x} u_{k}(x) \right + \left \partial_{y} u_{k}(x) \right \right) dx$	$\ell^{1,1,1}(der,pix,col)$
4	$\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \sqrt{(\partial_x u_k(x))^2 + (\partial_y u_k(x))^2} dx \right)^2}$	$\ell^{2,1,2}(der,pix,col)$
Anisotropic variant	$\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \left(\partial_x u_k(x) + \partial_y u_k(x) \right) dx \right)^2}$	$\ell^{1,1,2}(der,pix,col)$
6 47	$\int_{\Omega} \sqrt{\sum_{k=1}^{C} \left(\left(\partial_x u_k(x) \right)^2 + \left(\partial_y u_k(x) \right)^2 \right)} dx$	$\ell^{2,2,1}(der,col,pix)$
Anisotropic	$\int_{\Omega} \left(\sqrt{\sum_{k=1}^{C} (\partial_x u_k(x))^2} + \sqrt{\sum_{k=1}^{C} (\partial_y u_k(x))^2} \right) dx$	$\ell^{2,1,1}(col,der,pix)$
variants	$\int_{\Omega} \sqrt{\sum_{k=1}^{C} \left(\left \partial_{x} u_{k}(x) \right + \left \partial_{y} u_{k}(x) \right \right)^{2} dx}$	$\ell^{1,2,1}(der,col,pix)$
Strong	$\int_{\Omega} \left(\max_{1 \le k \le C} \partial_x u_k(x) + \max_{1 \le k \le C} \partial_y u_k(x) \right) dx$	$\ell^{\infty,1,1}(col, der, pix)$
coupling	$\int_{\Omega} \max_{1 \le k \le C} \left(\partial_x u_k(x) + \partial_y u_k(x) \right) dx$	$\ell^{1,\infty,1}(\operatorname{der},\operatorname{col},\operatorname{pix})$
Isotropic	$\int_{\Omega} \sqrt{\left(\max_{1 \le k \le C} \partial_x u_k(x) \right)^2 + \left(\max_{1 \le k \le C} \partial_y u_k(x) \right)^2} dx$	$\ell^{\infty,2,1}(col, der, pix)$
Tor Miles	$\int_{\Omega} \max_{1 \le k \le C} \sqrt{(\partial_x u(x))^2 + (\partial_y u(x))^2} dx$	$\ell^{2,\infty 1}(der, col, pix)$
Supremum variant	$\int_{\Omega} \left(\max \left\{ \max_{1 \le k \le C} \partial_x u_k(x) , \max_{1 \le k \le C} \partial_y u_k(x) \right\} \right) dx$	$\ell^{\infty,\infty,1}(col,der,pix)$
34 47	$\int_{\Omega} \sum_{i=1}^{r} \sigma_i \left(\nabla u(x) \right) dx$	$(S^1(col,der),\ell^1(pix))$
Frobenius norm	$\int_{\Omega} \sqrt{\sum_{i=1}^{r} \left(\sigma_{i}\left(\nabla u(x)\right)\right)^{2}} dx$	$(S^2(col,der),\ell^1(pix))$
23 47	$\int_{\Omega} \max_{1 \le i \le r} \sigma_i (\nabla u(x)) dx$	$(S^\infty(col,der),\ell^1(pix))$

Table 1: Overview of local vectorial TV approaches and the way they fit in our framework. [Duran15]

For $\mathbf{A} = \{\partial_x \mathbf{f}, \partial_y \mathbf{f}\} \in \mathbb{R}^{N \times L \times M}$ two family of norms are considered

- $||\cdot||_{p,q,r}: \ell^{p,q,r}(der, bands, pix)$
- $(\mathbb{S}^p, \ell^q)(der, bands, pix)$

$$||\mathbf{A}||_{p,q,r} = \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{L} \left(\sum_{k=1}^{M} |\mathbf{A}_{i,j,k}|^{p}\right)^{q/p}\right)^{r/q}\right)^{1/r}$$
$$(\mathbb{S}^{p}, \ell^{q}) (\mathbf{A}) = \left(\sum_{i=1}^{N} \left\| \begin{array}{ccc} \mathbf{A}_{i,1,1} & \cdots & \mathbf{A}_{i,1,M} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{i,L,1} & \cdots & \mathbf{A}_{i,L,M} \end{array} \right\|_{\mathbb{S}^{p}}^{q}\right)^{1/q}$$

Denoising and Inpainting

- Inpainting: missing data in the inpainting domain $\mathcal{I} \subseteq \Omega \subset \mathbb{R}^N$
- Denoising: $\mathcal{I} = \emptyset$

Convex formulation

$$\underset{\mathbf{Z}}{\text{minimize}} \quad \frac{1}{2} \|\mathbf{H} - \mathbf{Z}\|_{F(\overline{\mathcal{I}})}^2 + \lambda_{\varphi} \varphi(\mathbf{Z}),$$

with

- $\|\cdot\|_{F(\overline{\mathcal{I}})}$ is the Frobenius norm on the complement of the inpainting domain \mathcal{I}
- $\varphi(\mathbf{Z})$ is a regularization term with a coefficient λ_{φ}

Factorize \mathbf{Z} as $\mathbf{Z} = \mathbf{E}\mathbf{X}$ with \mathbf{E} is the set of L basis and \mathbf{X} are the representation coefficients

$$\underset{\mathbf{X}}{\text{minimize}} \quad \frac{1}{2} \|\mathbf{H} - \mathbf{E}\mathbf{X}\|_{F(\overline{\mathcal{I}})}^2 + \lambda_{\varphi}\varphi(\mathbf{X}).$$

3 3 9

イロン イヨン イヨン イヨン

Denoising on a synthetic image

4 bands image $(160 \times 160 \text{ pixels})$

- Different shapes and edge transitions
- Case 1, shapes present in bands 2 and 3
- Case 2, shapes present in all bands
- SNR = 10 dB

Case 1 Reference

Case 1 Noisy

Case 2 Reference

Case 2 Noisy

 $\ell^{2,2,1}(dbx)$

 $\ell^{1,1,1}(bdx)$

MSE (Band 1)

$\ell^{2,1,1}(bdx)$

 $\ell^{\infty,1,1}(bdx)$

Mauro Dalla Mura (GIPSA-lab)

Collaborative CTV pansharpening

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ = つくで Brest, 10 May 2017

$(\mathbb{S}^1(bd), \ell^1(x))$

 $(\mathbb{S}^{\infty}(bd), \ell^1(x))$

Image

MSE

SAM

MSE (Band 1)

◆ロト ◆母 ト ◆臣 ト ◆臣 ト 三日 の () ()

SAM

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ = つくで

Mauro Dalla Mura (GIPSA-lab)

MSE

Brest, 10 May 2017

SAM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Brest, 10 May 2017

Synthetic dataset

E 900

- ★ 臣 ▶ - ★ 臣

Results

Synthetic dataset $(SNR_{PAN} = 40 \text{ dB}, SNR_{HS} = 30 \text{ dB})$

Synthetic dataset: performance obtained by the tested CTV norm averaged on 100 Monte Carlo trials. λ_{φ} is the optimal value of the TV term weight

	$SNR_{PAN} = 40 \text{ dB}, SNR_{HS} = 30 \text{ dB}$				$SNR_{PAN} = 20 \text{ dB}, SNR_{HS} = 20 \text{ dB}$						
Norm	λ_{φ}	ERGAS	SAM	UIQI	SCC	λ_{φ}	ERGAS	SAM	UIQI	SCC	T [s]
$\ell^{2,2,1}(dbx)$	0.05	0.9919	1.8793	0.9334	0.9558	0.67	6.2949	11.438	0.7648	0.8799	39.9
$\ell^{1,1,1}(bdx)$	0.02	0.9968	2.0026	0.9336	0.9560	0.37	6.4758	11.111	0.7635	0.8483	45.8
$\ell^{2,1,1}(bdx)$	0.05	0.9095	1.7430	0.9359	0.9567	0.6	6.0433	11.142	<u>0.7676</u>	0.8814	28.9
$\ell^{\infty,1,1}(bdx)$	0.1	0.9832	1.9108	0.9347	0.9558	1.44	6.2674	11.284	0.7645	0.8669	130.3
$\ell^{\infty,\infty,1}(bdx)$	0.15	1.2594	2.0283	0.9290	0.9540	2.33	7.3584	11.432	0.7503	0.8160	121.5
$\ell^{2,\infty,1}(dbx)$	0.1	1.1538	2.2805	0.9285	0.9544	1.89	6.8250	11.446	0.7566	0.8438	92.4
$(S^{1}(bd), \ell^{1}(x))$	0.05	0.9330	1.7455	0.9353	0.9567	0.67	<u>6.0791</u>	11.041	0.7685	0.8821	45.5
$(\mathbb{S}^{\infty}(bd), \ell^1(x))$	0.075	1.1306	2.0097	0.9280	0.9550	0.83	7.1989	11.964	0.7495	0.8398	80.1

イロト イヨト イヨト イヨト

三日 のへで

Results

Pavia University dataset

Mauro Dalla Mura (GIPSA-lab)

(日) (四) (三) (三) (三)

Pavia University dataset

포네크

・ロン ・四マ ・ヨン・

Pavia University	dataset: pe	erformance o	btained by	some C	TV, CS	and MRA	
algorithms, avera	aged on 100	Monte Carl	o trials. λ_{φ}	is the c	ptimal v	value of the	TV

	$SNR_{PAN} = 40 \text{ dB}, SNR_{HS} = 30 \text{ dB}$					$SNR_{PAN} = 20 \text{ dB}, SNR_{HS} = 20 \text{ dB}$					
Algorithm	λ_{φ}	ERGAS	SAM	UIQI	SCC	λ_{φ}	ERGAS	SAM	UIQI	SCC	
EXP	-	7.3828	5.2903	0.7686	0.5517	-	7.4267	5.7044	0.7623	0.5533	
HPF	-	5.8474	7.0084	0.8792	0.7261	-	6.8810	8.0241	0.8105	0.7345	
ATWT	-	5.9789	8.0134	0.8789	0.7404	-	6.9640	8.8917	0.8154	0.7469	
GS	-	5.3330	6.3522	0.8839	0.7411	-	6.1975	7.0914	0.8276	0.7433	
GSA	-	6.0100	9.2121	0.8798	0.7409	-	7.4846	10.501	0.8056	0.7460	
PCA	-	7.4006	9.3170	0.7843	0.6854	-	8.0904	9.9096	0.7387	0.6899	
CTV: $\ell^{2,2,1}(dbx)$	0.002	3.8160	4.8204	0.9411	0.7804	0.02	4.2458	5.0985	0.9168	0.7494	
CTV: $\ell^{1,1,1}(bdx)$	0.002	3.8431	4.8398	0.9387	0.7777	0.005	4.2891	5.0138	0.9147	0.7679	
CTV: $\ell^{2,1,1}(bdx)$	0.002	3.9325	4.9662	0.9370	0.7763	0.01	4.3937	5.2126	0.9116	0.7600	
CTV: $(\mathbb{S}^1(bd), \ell^1(x))$	0.002	3.7809	4.7396	0.9421	0.7801	0.02	4.2097	5.0285	0.9179	0.7436	

- Pansharpening allows one to enhance the spatial resolution of an multi-/hyper-spectral image
- We proposed a technique based on CTV
- Different effects are obtained according to the coupling that is enforced on the spectral channels
- Relevant to consider different formulations for HSI

Next steps

- Weight differently the bands minimize $\frac{1}{2} \| (\mathbf{H} \mathbf{Z}) \mathbf{W} \|_{F(\overline{\mathcal{I}})}^2 + \lambda_{\varphi} \varphi(\mathbf{Z})$
- CTV for a discrete formulation of TV [Condat17]
- Inpainting in HSI videos (CTV: D_h , D_v , D_t)

・ロト ・ 同ト ・ ヨト ・ ヨト

Thanks for your attention!