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What is pansharpening?

Pansharpening: Sharpening (i.e., enhancing) a multi-/hyper-spectral image with
a panchromatic one.

Panchromatic (PAN) image Multispectral (MS) image
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What is pansharpening?

Pansharpened (PS) image
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Issues

Spatial details that are present in the PAN appear blurred in the MS channels →
due to the different spatial resolution

Details appear with variable intensity in the different spectral channels
according to their spectral signature

Retrieving the specific spectral contributions is difficult due to the absent
spectral information in the PAN

PAN MS PS
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The pansharpening model

Classical approach: extract the spatial details from the PAN that are not
resolved in the MS and inject them (opportunely modulated) into the MS

Notation

M̂S result of pansharpening
M̃S MS image upscaled to the size of the PAN

P the PAN image
PD spatial details of the PAN

Pansharpening
M̂Sk = M̃Sk + gkPD,

k denotes the k-th spectral channel over N bands
g = [g1, . . . , gk, . . . , gN ] are the injections gains

Two typical approaches are employed according to the technique used for estimating
PD:

1 Component Substitution (CS) → the details are estimated considering the MS

2 Multi-Resolution Analysis (MRA) → the details are estimated by filtering the PAN
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Component Substitution

Detail extraction
PD = P− IL

IL a monochromatic image obtained by the weighted linear composition of the
MS upsampled bands obtained as

IL =

N∑
k=1

wkM̃Sk.

Equivalent implementation of CS (under linear hypothesis):
1 perform a spectral transformation of the MS into another feature space in which

the spatial and spectral contributions are more separated
2 substitute the first component in the transformed space with the PAN after

histogram matching
3 apply the reverse transformation to produce the sharpened MS

Mauro Dalla Mura (GIPSA-lab) Collaborative CTV pansharpening Brest, 10 May 2017 8 / 32



Component Substitution

Detail extraction
PD = P− IL

IL a monochromatic image obtained by the weighted linear composition of the
MS upsampled bands obtained as

IL =

N∑
k=1

wkM̃Sk.

Equivalent implementation of CS (under linear hypothesis):
1 perform a spectral transformation of the MS into another feature space in which

the spatial and spectral contributions are more separated
2 substitute the first component in the transformed space with the PAN after

histogram matching
3 apply the reverse transformation to produce the sharpened MS

Mauro Dalla Mura (GIPSA-lab) Collaborative CTV pansharpening Brest, 10 May 2017 8 / 32



Component Substitution

Detail extraction
PD = P− IL

IL a monochromatic image obtained by the weighted linear composition of the
MS upsampled bands obtained as

IL =

N∑
k=1

wkM̃Sk.

Equivalent implementation of CS (under linear hypothesis):
1 perform a spectral transformation of the MS into another feature space in which

the spatial and spectral contributions are more separated
2 substitute the first component in the transformed space with the PAN after

histogram matching
3 apply the reverse transformation to produce the sharpened MS

Mauro Dalla Mura (GIPSA-lab) Collaborative CTV pansharpening Brest, 10 May 2017 8 / 32



Component Substitution

Detail extraction
PD = P− IL

IL a monochromatic image obtained by the weighted linear composition of the
MS upsampled bands obtained as

IL =

N∑
k=1

wkM̃Sk.

Equivalent implementation of CS (under linear hypothesis):
1 perform a spectral transformation of the MS into another feature space in which

the spatial and spectral contributions are more separated
2 substitute the first component in the transformed space with the PAN after

histogram matching
3 apply the reverse transformation to produce the sharpened MS

Mauro Dalla Mura (GIPSA-lab) Collaborative CTV pansharpening Brest, 10 May 2017 8 / 32



Component Substitution

Detail extraction
PD = P− IL

IL a monochromatic image obtained by the weighted linear composition of the
MS upsampled bands obtained as

IL =

N∑
k=1

wkM̃Sk.

Equivalent implementation of CS (under linear hypothesis):
1 perform a spectral transformation of the MS into another feature space in which

the spatial and spectral contributions are more separated
2 substitute the first component in the transformed space with the PAN after

histogram matching
3 apply the reverse transformation to produce the sharpened MS

Mauro Dalla Mura (GIPSA-lab) Collaborative CTV pansharpening Brest, 10 May 2017 8 / 32



Component Substitution

Detail extraction
PD = P− IL

IL a monochromatic image obtained by the weighted linear composition of the
MS upsampled bands obtained as

IL =

N∑
k=1

wkM̃Sk.

Equivalent implementation of CS (under linear hypothesis):
1 perform a spectral transformation of the MS into another feature space in which

the spatial and spectral contributions are more separated
2 substitute the first component in the transformed space with the PAN after

histogram matching
3 apply the reverse transformation to produce the sharpened MS

Mauro Dalla Mura (GIPSA-lab) Collaborative CTV pansharpening Brest, 10 May 2017 8 / 32



MultiResolution Analysis

MRA is based on the extraction of the spatial details present in the PAN (and not
fully resolved in the multispectral one) and their subsequent injection to the MS

bands
M̂Sk = M̃Sk + gk(P−PL)

Thus for MRA techniques the details are extracted as

PD = P−PL,

PL a low pass version of the PAN image obtained by spatially filtering P
(e.g., PL = P ∗ h, with h a mask implementing a low-pass filter and ∗ the
product of convolution)

The spatial details can be extracted by several approaches as using an average
filter or multiresolution decompositions of the image based on Laplacian
pyramids, or wavelet/contourlet operators

This paradigm has been also called Amélioration de la Résolution Spatiale par
Injection de Structures (ARSIS)
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This paradigm has been also called Amélioration de la Résolution Spatiale par
Injection de Structures (ARSIS)

Mauro Dalla Mura (GIPSA-lab) Collaborative CTV pansharpening Brest, 10 May 2017 9 / 32



MultiResolution Analysis

MRA is based on the extraction of the spatial details present in the PAN (and not
fully resolved in the multispectral one) and their subsequent injection to the MS

bands
M̂Sk = M̃Sk + gk(P−PL)

Thus for MRA techniques the details are extracted as

PD = P−PL,

PL a low pass version of the PAN image obtained by spatially filtering P
(e.g., PL = P ∗ h, with h a mask implementing a low-pass filter and ∗ the
product of convolution)

The spatial details can be extracted by several approaches as using an average
filter or multiresolution decompositions of the image based on Laplacian
pyramids, or wavelet/contourlet operators
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Injecting PD in the MS

For both CS and MRA families, PD has to be injected into the interpolated MS

bands

The injection is done by weighting PD by the coefficients gk

gk are in general different for each band

“global” pansharpening techniques consider the same gk for all the pixels in
each channel

“local” approaches allow gk to vary locally in the spatial domain of the image
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Hyperspectral Pansharpening [Simoes16]

Notation

HS image H ∈ RC×NHS , with C bands and NHS pixels

PAN image P ∈ R1×NPAN , NPAN = ρ2NHS , where ρ > 1 is the resolution ratio

Goal: high spatial and spectral resolution image Z ∈ RC×NPAN

HS model

H = ZBM + Nh

B ∈ RNPAN×NPAN blur

M ∈ RNPAN×NHS subsampling

Nh ∈ RC×NHS (i.i.d.) zero-mean Gaussian noise with variance σ2
HS

PAN model

P = RZ + Np

R ∈ R1×C is related to the Relative Spectral Response of PAN

Np ∈ R1×NPAN (i.i.d.) zero-mean Gaussian noise with variance σ2
PAN
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Hyperspectral Pansharpening

Z is a hyperspectral image H ∈ RC×NPAN , with C bands and NPAN pixels
(organized lexicographically order)

Z lives in a subspace of dimensionality lower than C

⇒ Factorize Z as Z = EX with
E is the set of basis (with cardinality L ≤ C) spanning the subspace of Z
X are the representation coefficients

Factorization
representation on a subspace e.g., Singular Value Decomposition
representation on a simplex (spectral unmixing) (e.g., Vertex Component
Analysis [Nascimento05] + FCLSU)
. . .

Mauro Dalla Mura (GIPSA-lab) Collaborative CTV pansharpening Brest, 10 May 2017 12 / 32



Hyperspectral Pansharpening

With Z = EX

minimize
X

1

2
‖H−EXBM‖2F +

λm

2
‖P−REX‖2F + λϕϕ(X)

where ‖·‖F is the Frobenius norm and λm = 1
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Total Variation

Total variation [Rudin92]

TV (X) =

∫
Ω

|∇X(x)|dx

for a given a scalar function X : (Ω ⊆ Rn)→ R
Used as a regularizer in many optimization problems in imaging.
For example:

minimize
X

||X||TV +
λ

2
||X −X0||22

Total variation for color images

For a multivariate image X : (Ω ⊆ Rn)→ Rm [Blomgren98] proposed

TVn,m(X) =

√√√√ m∑
i=1

[TVn,1(Xi)]2

However other alternative definitions are possible.



Collaborative Total Variation (CTV)

[Duran15]



Collaborative Total Variation

For A = {∂xf , ∂yf} ∈ RN×L×M two family of norms are considered

|| · ||p,q,r : `p,q,r(der, bands, pix)

(Sp, `q)(der, bands, pix)

||A||p,q,r =

 N∑
i=1

 L∑
j=1

(
M∑
k=1

|Ai,j,k|p
)q/p

r/q


1/r

(Sp, `q) (A) =

 N∑
i=1

∥∥∥∥∥∥∥
Ai,1,1 · · · Ai,1,M

...
. . .

...
Ai,L,1 · · · Ai,L,M

∥∥∥∥∥∥∥
q

Sp


1/q



Denoising and Inpainting

Inpainting: missing data in the inpainting domain I ⊆ Ω ⊂ RN

Denoising: I = ∅

Convex formulation

minimize
Z

1

2
‖H− Z‖2F (I) + λϕϕ(Z),

with

‖·‖F (I) is the Frobenius norm on the complement of the inpainting domain I
ϕ(Z) is a regularization term with a coefficient λϕ

Factorize Z as Z = EX with E is the set of L basis and X are the representation
coefficients

minimize
X

1

2
‖H−EX‖2F (I) + λϕϕ(X).
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Denoising on a synthetic image

4 bands image (160× 160 pixels)

Different shapes and edge transitions

Case 1, shapes present in bands 2 and 3

Case 2, shapes present in all bands

SNR = 10 dB

Case 1 Reference Case 1 Noisy Case 2 Reference Case 2 Noisy
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Denoising - Results Case 1

`2,2,1(dbx)

`1,1,1(bdx)

Image MSE SAM MSE (Band 1)
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Denoising - Results Case 1

(S1(bd), `1(x))

(S∞(bd), `1(x))

Image MSE SAM MSE (Band 1)
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Denoising - Results Case 2

`2,2,1(dbx)

`1,1,1(bdx)

Image MSE SAM
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Denoising - Results Case 2

`2,1,1(bdx)

`∞,1,1(bdx)

Image MSE SAM
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Results

Synthetic dataset

Reference PAN HS `2,2,1(dbx)
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Results

Synthetic dataset (SNRPAN = 40 dB, SNRHS = 30 dB)

SAM `2,2,1(dbx) `1,1,1(bdx) `2,1,1(bdx) (S1(bd), `1(x))

Reference
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Results

Synthetic dataset: performance obtained by the tested CTV norm averaged on 100
Monte Carlo trials. λϕ is the optimal value of the TV term weight

SNRPAN = 40 dB, SNRHS = 30 dB SNRPAN = 20 dB, SNRHS = 20 dB
Norm λϕ ERGAS SAM UIQI SCC λϕ ERGAS SAM UIQI SCC T [s]

`2,2,1(dbx) 0.05 0.9919 1.8793 0.9334 0.9558 0.67 6.2949 11.438 0.7648 0.8799 39.9

`1,1,1(bdx) 0.02 0.9968 2.0026 0.9336 0.9560 0.37 6.4758 11.111 0.7635 0.8483 45.8

`2,1,1(bdx) 0.05 0.9095 1.7430 0.9359 0.9567 0.6 6.0433 11.142 0.7676 0.8814 28.9

`∞,1,1(bdx) 0.1 0.9832 1.9108 0.9347 0.9558 1.44 6.2674 11.284 0.7645 0.8669 130.3

`∞,∞,1(bdx) 0.15 1.2594 2.0283 0.9290 0.9540 2.33 7.3584 11.432 0.7503 0.8160 121.5

`2,∞,1(dbx) 0.1 1.1538 2.2805 0.9285 0.9544 1.89 6.8250 11.446 0.7566 0.8438 92.4

(S1(bd), `1(x)) 0.05 0.9330 1.7455 0.9353 0.9567 0.67 6.0791 11.041 0.7685 0.8821 45.5

(S∞(bd), `1(x)) 0.075 1.1306 2.0097 0.9280 0.9550 0.83 7.1989 11.964 0.7495 0.8398 80.1
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Results

Pavia University dataset

Reference image PAN HS Fused (CTV
`2,2,1(dbx))
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Results

Pavia University dataset

Reference image PAN HS Fused (CTV
`2,2,1(dbx))
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Results

Pavia University dataset: performance obtained by some CTV, CS and MRA
algorithms, averaged on 100 Monte Carlo trials. λϕ is the optimal value of the TV

SNRPAN = 40 dB, SNRHS = 30 dB SNRPAN = 20 dB, SNRHS = 20 dB
Algorithm λϕ ERGAS SAM UIQI SCC λϕ ERGAS SAM UIQI SCC

EXP - 7.3828 5.2903 0.7686 0.5517 - 7.4267 5.7044 0.7623 0.5533

HPF - 5.8474 7.0084 0.8792 0.7261 - 6.8810 8.0241 0.8105 0.7345

ATWT - 5.9789 8.0134 0.8789 0.7404 - 6.9640 8.8917 0.8154 0.7469

GS - 5.3330 6.3522 0.8839 0.7411 - 6.1975 7.0914 0.8276 0.7433

GSA - 6.0100 9.2121 0.8798 0.7409 - 7.4846 10.501 0.8056 0.7460

PCA - 7.4006 9.3170 0.7843 0.6854 - 8.0904 9.9096 0.7387 0.6899

CTV: `2,2,1(dbx) 0.002 3.8160 4.8204 0.9411 0.7804 0.02 4.2458 5.0985 0.9168 0.7494

CTV: `1,1,1(bdx) 0.002 3.8431 4.8398 0.9387 0.7777 0.005 4.2891 5.0138 0.9147 0.7679

CTV: `2,1,1(bdx) 0.002 3.9325 4.9662 0.9370 0.7763 0.01 4.3937 5.2126 0.9116 0.7600

CTV: (S1(bd), `1(x)) 0.002 3.7809 4.7396 0.9421 0.7801 0.02 4.2097 5.0285 0.9179 0.7436
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Conclusions

Pansharpening allows one to enhance the spatial resolution of an
multi-/hyper-spectral image

We proposed a technique based on CTV

Different effects are obtained according to the coupling that is enforced on the
spectral channels

Relevant to consider different formulations for HSI

Next steps

Weight differently the bands minimize
Z

1
2
‖(H− Z)W‖2F (I) + λϕϕ(Z)

CTV for a discrete formulation of TV [Condat17]

Inpainting in HSI videos (CTV: Dh, Dv, Dt)
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Thanks for your attention!
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