
Context Measures of heterogeneity Spectral unmixing Experimental protocol Primary results Conclusions and perspectives References

Ecosystem services assessment using hyperspectral images
5e Colloque Groupe Hyperspectral SFPT-GH

M. Fauvel 1, T. Uezato 2, R. Duflot 1, N. Dobigeon 2, A. Vialatte 1 and D. Sheeren 1

1 UMR 1201 DYNAFOR INRA & Institut National Polytechnique de Toulouse
2 UMR 5505 IRIT CNRS & Institut National Polytechnique de Toulouse

[2017-05-11 Thu 11:35]

M. Fauvel DYANFOR-IRIT
Ecosystem services assessment using hyperspectral images 1 of 27



Context Measures of heterogeneity Spectral unmixing Experimental protocol Primary results Conclusions and perspectives References

Outline

Context

Measures of heterogeneity

Spectral unmixing

Experimental protocol

Primary results

Conclusions and perspectives

M. Fauvel DYANFOR-IRIT
Ecosystem services assessment using hyperspectral images 2 of 27



Context Measures of heterogeneity Spectral unmixing Experimental protocol Primary results Conclusions and perspectives References

Outline

Context

Measures of heterogeneity

Spectral unmixing

Experimental protocol

Primary results

Conclusions and perspectives

M. Fauvel DYANFOR-IRIT
Ecosystem services assessment using hyperspectral images 3 of 27



Context Measures of heterogeneity Spectral unmixing Experimental protocol Primary results Conclusions and perspectives References

Ecosystem Services

Biodiversity contributes to many ecological functions within ecosystems

Ecosystem services [Gro13]:
I Provisioning services
I Regulating services
I Cultural services
I Supporting services

Stakeholders need maps of ecosystem state
Usually done by ground surveys

I Time-consuming and expensive
I Limited in terms of area covered and/or temporal periodicity

Remote sensing mapping
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ES assessment with remote sensing [AAD15]
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Project MUESLI
Multiscale Mapping of Ecosystem Services by Very High Spatial Resolution

Hyperspectral and Lidar Remote Sensing Imagery
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Objectives

Moving forward, beyond the LC maps !

Continuous representation of landscapes:
1. Spectral indices (NDVI, . . . )
2. Spectral mixture
3. Additional topographic data, e.g., LiDAR, LST, . . .

In this talk: Hyperspectral images
I Spectral unmixing to infer spectral heterogeneity
I Correlation with regulation and production services
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Spectral heterogenity

Proposed by Rocchini et. al [Roc+10]

Computed as the mean Euclidean distance to the centroid of a given plot p:

H (p) = 1
np

np∑
i∈p
‖xi − µp‖2

where

µp = 1
np

np∑
i∈p

xi .

Equivalently, it can be computed as the trace of the empirical covariance matrix of the plot:

H (p) = Trace
(
Σp
)
.

Variant: first reduce the dimension (PCA, . . . )
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Species richness

Proposed by Feret et. al [FA14]

Estimated by the Shannon entropy of a given plot

Ep = −
S∑

s=1
ps log(ps)

where p is the considered plot, S the total number of species/classes/clusters and ps is the relative
proportion.
Clusters estimated through the PCA+Kmeans pipeline applied on the whole image.
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Curse of dimensionality
Euclidean distance may fail to correctly assess the similarity between samples [AHK01]

dM (x)− dm(x)
dM (x) →p 0

for all Minkowski norm: ‖x‖ =
(∑d

i=1 |xi |p
)1/p.

PCA loses information and is usually not adapted to hyperspectral images [CB03]

M. Fauvel DYANFOR-IRIT
Ecosystem services assessment using hyperspectral images 11 of 27



Context Measures of heterogeneity Spectral unmixing Experimental protocol Primary results Conclusions and perspectives References

Curse of dimensionality
Euclidean distance may fail to correctly assess the similarity between samples [AHK01]

dM (x)− dm(x)
dM (x) →p 0

for all Minkowski norm: ‖x‖ =
(∑d

i=1 |xi |p
)1/p.

PCA loses information and is usually not adapted to hyperspectral images [CB03]

M. Fauvel DYANFOR-IRIT
Ecosystem services assessment using hyperspectral images 11 of 27



Context Measures of heterogeneity Spectral unmixing Experimental protocol Primary results Conclusions and perspectives References

Outline

Context

Measures of heterogeneity

Spectral unmixing

Experimental protocol

Primary results

Conclusions and perspectives

M. Fauvel DYANFOR-IRIT
Ecosystem services assessment using hyperspectral images 12 of 27



Context Measures of heterogeneity Spectral unmixing Experimental protocol Primary results Conclusions and perspectives References

Linear mixture model

Each pixel is a convex linear combination of endmembers (pure spectra):

x =
s∑

j=1
αjsj + e

I sj is the jth endmember,
I αj is the abundance of endmember j,
I e is the modelling error.

The abundances are subject to the following constraints:
I Non negativity: αj ≥ 0, ∀j = 1, . . . , s
I Sum to one:

∑s
j=1 αj = 1.

Matrix formulation:
x = Sα + e

where S =
[
s1, . . . , ss

]
.
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LMM based heterogenity measure

Mean distance between endmembers

H (p) = 1
sp

Trace
(
S̄S̄>)

where S̄ is the centered matrix of endmembers.

α-diversity computed on abundance features rather than PCA features

x̃ = [α1, . . . , αs]

with s � d.
I PCA: minimizes a reconstruction error using an orthogonal basis
I LMM: minimizes a reconstruction error using a physically interpretable non-orthogonal basis
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Illustration

−1 −0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

First PC accounts for 92% of the cummulative variance
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Data collection

HySpec (2m/pixel) acquired June 8/9, 2016.

Domain Beginning End
1 400 1340
2 1550 1800
3 1980 2400

27 crop plots of radius 500 m were sampled
during February to August 2016.

Provisionning Control
Yield Aphid low rate
Average Ear Weight Aphid Hight rate
Thousand Seed Weight Seeds rate
Density Eggs rate
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Simulations

Unmixing strategy
I Vertex Component Analysis (VCA) are used to extract a large number of endmembers (36)
I Sparse unmixing [IBP11]: only endmembers whose abundances are different from 0 are considered

present in the plot and variation of illumination is accounted for.
I Use only vegetative classes/endmembers

Competitive strategies

Method Acronym
Mean distance to the centroids MDC
Mean distance to the endmembers MDE
Abundances-based entropy AE
Spectral species distribution using PCA SSD-PCA
Spectral species distribution using abundances SSD-A
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Global α-diversity
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Local α-diversity
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Ecosystem services
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Conclusions and perspectives

Representation of landscapes using unmixing

Good behavior w.r.t to standard techniques
Open methological questions:

I Number of endmenbers ?
I Level of sparsity ?

Open thematic questions:
I Which services are the most predictable (and why) ?
I Can abundances and endmembers be informative together ?

How to incorporate LiDAR:
I In the unmixing process ?
I In the explanatory model ?
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