

Grasslands species diversity mapping from hyperspectral remote sensing

 5^e Colloque Groupe Hyperspectral SFPT-GH

M. Lopes ¹, M. Fauvel ¹, A. Ouin ¹ and S. Girard ²

 1 UMR 1201 DYNAFOR INRA & Institut National Polytechnique de Toulouse 2 Equipe MISTIS-LJK, Universite Grenoble Alpes, INRIA, France

[2017-05-11 Thu]

Outline

Context

Measure of heterogeneity

High dimensional discriminant analysis

Experimental protocol

Primary results

Conclusions and perspectives

Context			

Outline

Context

Measure of heterogeneity

High dimensional discriminant analysis

Experimental protocol

Primary results

Conclusions and perspectives

M. Fauvel

Grasslands species diversity

- Grasslands represent a significant source of biodiversity in farmed landscapes,
- They provide many ecosystem services (carbon regulation, erosion regulation, pollination...),
- Grasslands surface area and their diversity are declining [OMa12],
- Maps over grassland diversity are required over large area extents.

Spectral Variation Hypothesis

- It assumes that the spectral heterogeneity is correlated with spatial variations and heterogeneity of the habitat [Pal+02]
- Spectral heterogeneity can be used as a proxy for species diversity [Roc+16]
- Several indices have been proposed
 - Standard deviation or coefficient of variations of NDVI
 - PCA
 - Distance to centroids
 - Clustering

Objectives

- Project MUESLI
- Use hyperspectral images to monitor species richness at the parcel level
- Methodological contributions
 - Use of robust high dimensional clustering method
 - Extend conventional heterogeneity/diversity index

Measure of heterogeneity			

Outline

Context

Measure of heterogeneity

High dimensional discriminant analysis

Experimental protocol

Primary results

Conclusions and perspectives

Proposed by Rocchini et. al [Roc+16]

- Proposed by Rocchini et. al [Roc+16]
- It consists in computing the mean euclidean distance to the centroid of a given plot:

$$H(p) = \frac{1}{n_p} \sum_{i \in p}^{n_p} \|\mathbf{x}_i - \boldsymbol{\mu}_p\|^2$$

where

$$\boldsymbol{\mu}_p = \frac{1}{n_p} \sum_{i \in p}^{n_p} \mathbf{x}_i.$$

- Proposed by Rocchini et. al [Roc+16]
- It consists in computing the mean euclidean distance to the centroid of a given plot:

$$H(p) = \frac{1}{n_p} \sum_{i \in p}^{n_p} \|\mathbf{x}_i - \boldsymbol{\mu}_p\|^2$$

where

Equivalently, it can be computed as the trace of the empirical covariance matrix of the plot:

$$H(p) = \mathsf{Trace}\big(\boldsymbol{\Sigma}_p\big).$$

Grasslands species diversity mapping from hyperspectral remote sensing

- Proposed by Rocchini et. al [Roc+16]
- It consists in computing the mean euclidean distance to the centroid of a given plot:

$$H(p) = \frac{1}{n_p} \sum_{i \in p}^{n_p} \|\mathbf{x}_i - \boldsymbol{\mu}_p\|^2$$

where

$$\boldsymbol{\mu}_p = \frac{1}{n_p} \sum_{i \in p}^{n_p} \mathbf{x}_i.$$

Equivalently, it can be computed as the trace of the empirical covariance matrix of the plot:

$$H(p) = \mathsf{Trace}(\boldsymbol{\Sigma}_p).$$

■ Variant: first reduce the dimensionality (PCA, ...)

Grasslands species diversity mapping from hyperspectral remote sensing

Why MDC may not work

The following configurations have the same MDC

Proposed by Feret *et. al* [FA14]

α -diversity

- Proposed by Feret *et. al* [FA14]
- Estimated by the Shannon entropy of a given plot

$$E_p = -\sum_{s=1}^{S} p_s \log(p_s)$$

where p is the considered plot, S the total number of species/classes/clusters and p_s is the relative proportion.

α -diversity

- Proposed by Feret *et. al* [FA14]
- Estimated by the Shannon entropy of a given plot

$$E_p = -\sum_{s=1}^{S} p_s \log(p_s)$$

where p is the considered plot, S the total number of species/classes/clusters and p_s is the relative proportion.

Clusters estimated through the *PCA+Kmeans* pipeline applied on the whole image.

Why Kmeans may not work

Measure of heterogeneity

	High dimensional discriminant analysis		

Outline

Context

Measure of heterogeneity

High dimensional discriminant analysis

Experimental protocol

Primary results

Conclusions and perspectives

	100	

Statistical model

- Mixture model $p(\mathbf{x}) = \sum_{c=1}^{C} \pi_c p(\mathbf{x}|c)$,
- \blacksquare Under Gaussian assumption $p(\mathbf{x}|c)$ is a d-dimensional Gaussian distribution

$$p(\mathbf{x}|c) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}_c|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_c)^\top \mathbf{\Sigma}_c^{-1} (\mathbf{x} - \boldsymbol{\mu}_c)\right)$$

• Curse of dimensionality: special structure for the covariance matrix $\mathbf{\Sigma}_c = \mathbf{Q}_c \mathbf{\Lambda}_c \mathbf{Q}_c^ op$

High dimensional GMM [BGS07]

Under the HDDA model

$$\begin{split} \boldsymbol{\Sigma}_i &= \tilde{\mathbf{Q}}_i \tilde{\mathbf{\Lambda}}_i \tilde{\mathbf{Q}}_i^\top + \lambda_i \mathbf{I}_d \\ \boldsymbol{\Sigma}_i^{-1} &= \tilde{\mathbf{Q}}_i \tilde{\mathbf{V}}_i \tilde{\mathbf{Q}}_i^\top + \lambda_i^{-1} \mathbf{I}_d \end{split}$$

with $\tilde{\mathbf{Q}}_i = \begin{bmatrix} \mathbf{q}_{i1}, \dots, \mathbf{q}_{ip_i} \end{bmatrix}$, $\tilde{\mathbf{\Lambda}}_i = \operatorname{diag} \begin{bmatrix} \lambda_{i1} - \lambda_i, \dots, \lambda_{ip_i} - \lambda_i \end{bmatrix}$, $\tilde{\mathbf{V}}_i = \operatorname{diag} \begin{bmatrix} \frac{1}{\lambda_{i1}} - \frac{1}{\lambda_i}, \dots, \frac{1}{\lambda_{ip_i}} - \frac{1}{\lambda_i} \end{bmatrix}$ and \mathbf{I}_d is the identity matrix of size d.

Spectral heterogeneity revisited 1/2

 \blacksquare Samples covariance matrix for a given plot p

$$\mathbf{\Sigma}_p = \mathbf{B}_p + \mathbf{W}_p$$

where

• \mathbf{B}_p is the between class covariance matrix of plot p

$$\mathbf{B}_p = \sum_{c=1}^{C_p} \pi_{pc} (oldsymbol{\mu}_{pc} - oldsymbol{\mu}_p) (oldsymbol{\mu}_{pc} - oldsymbol{\mu}_p)^ op$$

W_p is the within class covariance matrix of plot p

$$\mathbf{W}_p = \sum_{c=1}^{C_p} \pi_{pc} \mathbf{\Sigma}_{pc}$$

M. Fauvel

Grasslands species diversity mapping from hyperspectral remote sensing

Spectral heterogeneity revisited 2/2

Trace(
$$\Sigma_p$$
) = Trace(\mathbf{B}_p) + Trace(\mathbf{W}_p)
Trace(\mathbf{B}_p) = $\sum_{c=1}^{C_p} \pi_{pc} \|\boldsymbol{\mu}_{pc} - \boldsymbol{\mu}_p\|^2$
Trace(\mathbf{W}_p) = $\frac{1}{n_p} \sum_{i=1}^{C_p} \sum_{k \in c} \|\mathbf{x}_{pk} - \boldsymbol{\mu}_{pc}\|^2$

	$Trace(\boldsymbol{\Sigma}_p)$	$Trace(\mathbf{B}_p)$	$Trace(\mathbf{W}_p)$
Plot 1	13.63	0	13.63
Plot 2	13.74	12.71	0.973

Improved spectral entropy

For each pixel of the plot, the vector of posterior probabilities is available

$$\left[p(C=1|\mathbf{x}),\ldots,p(C=C_p|\mathbf{x})\right]$$

The relative proportion is then computed as:

$$p_c = \frac{1}{n_p} \sum_{k \in c} p(C = c | \mathbf{x}) = \pi_c$$

It allows to let a pixel belonging to several clusters (not a crisp affectation)

	Experimental protocol		

Outline

Context

Measure of heterogeneity

High dimensional discriminant analysis

Experimental protocol

Primary results

Conclusions and perspectives

M. Fauvel

Grasslands species diversity mapping from hyperspectral remote sensing

Data collection

Data collection

Data collection

M. Fauvel

Grasslands species diversity mapping from hyperspectral remote sensing

	Experimental protocol		

Simulations

• Select the number of classes using ICL: stop when $dICL{<}1\%$

	Experimental protocol		

Simulations

• Select the number of classes using ICL: stop when dICL < 1%

		Primary results	

Outline

Context

Measure of heterogeneity

High dimensional discriminant analysis

Experimental protocol

Primary results

Conclusions and perspectives

M. Fauvel

M. Fauvel

M. Fauvel

Grasslands species diversity mapping from hyperspectral remote sensing

Measure of heterogeneity

ID	С	E	В	W	V	Н	D
6	2	0.68	13.16	11.32	11.17	0.97	0.13
8	1	0.0	inf	11.12	11.12	0.09	3.81
137	4	1.31	10.36	10.97	9.93	0.08	3.97
143	2	0.68	15.02	11.57	11.54	0.04	5.06

B, W and V are in *log* scale

 $\bullet \ E \approx \log(C)$

			Conclusions and perspectives	

Outline

Context

Measure of heterogeneity

High dimensional discriminant analysis

Experimental protocol

Primary results

Conclusions and perspectives

References

Conclusions and perspectives

Species diversity in semi-natural grasslands

M. Fauvel

Conclusions and perspectives

- Species diversity in semi-natural grasslands
- Extension of heterogeneity measures with high dimensional clustering techniques

Conclusions and perspectives

- Species diversity in semi-natural grasslands
- Extension of heterogeneity measures with high dimensional clustering techniques
- Estimated diversity does not correlate (yet!) with field work

Bibliography I

Bouveyron, Charles, Stephane Girard, and Cordelia Schmid. "High-Dimensional Data Clustering". In: Computational Statistics and Data Analysis 52.1 (Sept. 2007), pp. 502–519. DOI: 10.1016/j.csda.2007.02.009. URL: https://hal.archives-ouvertes.fr/hal-00022183. Féret, Jean-Baptiste and Gregory P Asner. "Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy". In: Ecological Applications 24.6 (2014), pp. 1289–1296. O'Mara, F. P. "The role of grasslands in food security and climate change". In: Annals of Botany 110.6 (2012), p. 1263. DOI: 10.1093/aob/mcs209. eprint: /oup/backfile/Content public/Journal/aob/110/6/10.1093/aob/mcs209/2/mcs209.pdf. URL: +%20http://dx.doi.org/10.1093/aob/mcs209. Palmer, Michael W. et al. "Quantitative tools for perfecting species lists". In: Environmetrics 13.2 (2002), pp. 121-137. ISSN: 1099-095X. DOI: 10.1002/env.516. URL: http://dx.doi.org/10.1002/env.516.

Rocchini, Duccio et al. "Satellite remote sensing to monitor species diversity: potential and pitfalls". In: Remote Sensing in Ecology and Conservation 2.1 (2016), pp. 25–36. ISSN: 2056-3485. DOI: 10.1002/rse2.9. URL: http://dx.doi.org/10.1002/rse2.9.

References

			References

Creative Commons Attribution-ShareAlike 4.0 Unported License

