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Grasslands species diversity

Grasslands represent a significant source of biodiversity in farmed landscapes,
They provide many ecosystem services (carbon regulation, erosion regulation, pollination. . . ),
Grasslands surface area and their diversity are declining [OMa12],
Maps over grassland diversity are required over large area extents.
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Spectral Variation Hypothesis

It assumes that the spectral heterogeneity is correlated with spatial variations and heterogeneity of
the habitat [Pal+02]
Spectral heterogeneity can be used as a proxy for species diversity [Roc+16]
Several indices have been proposed

I Standard deviation or coefficient of variations of NDVI
I PCA
I Distance to centroids
I Clustering
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Objectives

Project MUESLI
Use hyperspectral images to monitor species richness at the parcel level
Methodological contributions

I Use of robust high dimensional clustering method
I Extend conventional heterogeneity/diversity index
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Spectral heterogenity

Proposed by Rocchini et. al [Roc+16]

It consists in computing the mean euclidean distance to the centroid of a given plot:

H (p) = 1
np

np∑
i∈p
‖xi − µp‖2

where

µp = 1
np

np∑
i∈p

xi .

Equivalently, it can be computed as the trace of the empirical covariance matrix of the plot:

H (p) = Trace
(
Σp
)
.

Variant: first reduce the dimensionality (PCA, . . . )
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Why MDC may not work

The following configurations have the same MDC
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α-diversity

Proposed by Feret et. al [FA14]

Estimated by the Shannon entropy of a given plot

Ep = −
S∑

s=1
ps log(ps)

where p is the considered plot, S the total number of species/classes/clusters and ps is the relative
proportion.
Clusters estimated through the PCA+Kmeans pipeline applied on the whole image.
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Why Kmeans may not work
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Statistical model
Mixture model p(x) =

∑C
c=1 πcp(x|c),

Under Gaussian assumption p(x|c) is a d-dimensional Gaussian distribution

p(x|c) = 1
(2π)d/2|Σc|1/2 exp

(
−1

2 (x− µc)>Σ−1
c (x− µc)

)
Curse of dimensionality: special structure for the covariance matrix Σc = QcΛcQ>c

Λc =



λc1 0
. . .

0 λcpi

0

0

λc 0
. . .

. . .
0 λc



 pc

 (d − pc)
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High dimensional GMM [BGS07]

A1

λ11

λ12

λ1

Ā2

λ2

λ2

λ21

e1

e2

e3

Under the HDDA model

Σi = Q̃iΛ̃iQ̃>i + λiId

Σ−1
i = Q̃iṼiQ̃>i + λ−1

i Id

with Q̃i =
[
qi1, . . . ,qipi

]
, Λ̃i = diag

[
λi1 − λi , . . . , λipi − λi

]
, Ṽi = diag

[
1
λi1
− 1

λi
, . . . , 1

λipi
− 1

λi

]
and Id is the identity matrix of size d.
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Spectral heterogeneity revisited 1/2

Samples covariance matrix for a given plot p

Σp = Bp + Wp

where
I Bp is the between class covariance matrix of plot p

Bp =
Cp∑

c=1

πpc(µpc − µp)(µpc − µp)>

I Wp is the within class covariance matrix of plot p

Wp =
Cp∑

c=1

πpcΣpc
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Spectral heterogeneity revisited 2/2

Trace(Σp) = Trace(Bp) + Trace(Wp)

Trace(Bp) =
Cp∑

c=1
πpc‖µpc − µp‖2

Trace(Wp) = 1
np

Cp∑
i=1

∑
k∈c
‖xpk − µpc‖2

Trace(Σp) Trace(Bp) Trace(Wp)
Plot 1 13.63 0 13.63
Plot 2 13.74 12.71 0.973
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Improved spectral entropy

For each pixel of the plot, the vector of posterior probabilities is available[
p(C = 1|x), . . . , p(C = Cp|x)

]
The relative proportion is then computed as:

pc = 1
np

∑
k∈c

p(C = c|x) = πc

It allows to let a pixel belonging to several clusters (not a crisp affectation)
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Data collection
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Simulations
Select the number of classes using ICL: stop when dICL<1%
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Clusters
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Measure of heterogeneity

ID C E B W V H D
6 2 0.68 13.16 11.32 11.17 0.97 0.13
8 1 0.0 inf 11.12 11.12 0.09 3.81

137 4 1.31 10.36 10.97 9.93 0.08 3.97
143 2 0.68 15.02 11.57 11.54 0.04 5.06

B, W and V are in log scale
E ≈ log(C )
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Conclusions and perspectives

Species diversity in semi-natural grasslands

Extension of heterogeneity measures with high dimensional clustering techniques
Estimated diversity does not correlate (yet!) with field work
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