Estimation of pear tree vitality based on multimodal, multitemporal optical remote sensing data

Kuniaki Uto¹, Mauro Dalla Mura², Stephanie Delalieux³ and Jocelyn Chanussot^{2,4}

¹ School of Computing, Tokyo Institute of Technology, Yokohama, Japan
 ² GIPSA-Lab, Grenoble Institute of Technology, Grenoble, France
 ³ Flemish Institute for Technological Research (VITO), Mol, Belgium
 ⁴ Department of Electrical and Computer Engineering, University of of Iceland, Reykjavik, Iceland

Introduction

- Multitemporal monitoring of fruit orchard vitality with multisensor Belair data (Hypertemp)
 - The development of efficient management strategies in capital-intensive fruit crops.
 - Remote detection, mapping and monitoring of plant vitality

Study region: Hesbania, BELGIUM

Build: 24/09/2014 - © 2013-2014 - VITO NV. all rights reserved. Terms of use

http://belair.geoportal.vgt.vito.be/geonetwork/apps/tabsearch/?hl=eng

Study site: Pear orchard

Study site: Pear orchard

- Design
 - Pear trees under 4 different nutrient treatments
 - 3 plots per treatment
 - 3 trees per plot (2 buffer trees excluded)
 - Total number of trees: 4×3×3=36 trees with 9 trees per treatment
 - Interval of 1.5 meter
 - Center position of each tree is given by shapefile
- In-situ data
 - **Harvest** (number of pears, weight of pears per tree, 2012-2015)
 - **Chlorophyll** measurement by Chlorophyll content meter CCM-200 plus (20 leaves per tree, 2016)
 - **Mineral contents** (50 leaves, middle trees of each plots, 3 tree per treatment)
 - **Hyperspectral data** by ASD FieldSpec (leaf scale, canopy scale per tree, 2013, 2015, 2016)

Color	Treatment	Number of trees
	CaNO₃ (artificial)	9 (3 tees × 3 plots)
	Slurry (organic)	9 (3 tees × 3 plots)
	Digestant (organic)	9 (3 tees × 3 plots)
	Liquid N (artificial)	9 (3 tees × 3 plots)
	Buffer	

Airborne image (APEX)

- Dates: 08/07/2013, 01/07/2015, 19/07/2016
- Bands: 267
- Spectral range: 400 2300 nm
- Resolution: 2.0 m (tree interval of 1.5 m)

Aerial observation based on UAV

- Platform: Remotely Piloted Aircraft System (PRAS), senselFy eBee
 - Weight: approx. 0.69 kg
 - Cruise speed: 40-90 km/h
 - Maximum flight time: 50 min.
 - Maximum coverage: 12 km²
- Optical sensors (multimodal)
 - S110 RGB (r,g,b), RE (b, g, red edge), Multispectral (g, r, red edge, NIR)

Spatial resolution (m)

Aerial images

- Observation: 6 dates in 2015
- Georeferenced images (Geotiff format)
- Center position of each tree is given by shapefile
- Extraction of each canopy: within 0.7 m radius of center position

Date	Time	RGB	RE	MultiSpec
		DN value (uint8)	DN value (uint8)	reflectance
11/05/2015	unknown			0.0900
21/05/2015	11h00	0.0261	0.0334	
12/06/2015	15h35	0.0195	0.0239	
01/07/2015	16h04	0.0190	0.0232	0.0943
13/08/2015	09h56	0.0189	0.0238	0.0945
09/09/2015	15h16	0.0275	0.0343	0.0900

RE

RGB

multispectral

number of pears

Brief verifications

• No significant difference caused by nutrient conditions

• Mean optical info is not sufficient for estimating growth states

Correlation

	NDVI	Cl _{green}	Ci _{red edge}
Number	0.1902	-0.0037	0.0274
Weight	0.3241	0.0549	0.0980

*Each band information is an averaged value within canopy

Estimation based on machine learning

• Objective

- Classification: four different nutrient treatments
- Regression: yields (number, weight)
- Features: single sensor on a single date
 - Mean value
- Estimation
 - Classifiers: LDA, SVM
 - Regression: linear regression, SVM, neural network
- Validation
 - 9-fold CV
 - Classification: overall accuracy
 - Regression: correlation

Classification	(overall	accuracy)
----------------	----------	-----------

over 0.6			RGB (dim = 3)	RE (dim = 3)	Multispec (dim = 4)
over 0.5		11/05/2017			0.62972
		21/05/2015	0.34694	0.35667	
		12/06/2015	0.42806	0.29556	
		01/07/2015	0.28944	0.26	0.54139
		13/08/2015	0.31833	0.53778	0.52639
	ĺ	09/09/2015	0.33222	0.18806	0.42111

Yield (number, correlation)

		RGB (dim = 3)	RE (dim = 3)	Multispec (dim = 4)
	11/05/2015			-0.12104
over 0.4	21/05/2015	0.4502	0.25264	
	12/06/2015	0.38375	0.31152	
over 0.35	01/07/2015	0.12502	0.45651	0.051739
	13/08/2015	0.17649	0.21582	0.33369
	09/09/2015	0.34256	0.061575	-0.15193

Yield (weight, correlation)

over 0.4	
over 0.35	

	RGB (dim = 3)	RE (dim = 3)	Multispec (dim = 4)
11/05/2015			-0.36464
21/05/2015	0.26093	0.25191	
12/06/2015	0.2032	0.32681	
01/07/2015	00.32049	0.27679	0.060387
13/08/2015	0.15629	0.27663	0.16699
09/09/2015	0.43531	-0.36829	0.078858

Estimation using high-order statistics

- Canopy structure
 - DSM is not reliable
 - Shading is helpful
 - High-order statistics

• Brief summary

- Mean optical information is not sufficient
- Shading represents canopy structure
- Temporal shading images

Comparison of estimation accuracies based on high order statistics (multispectral data: 4 bands)

		Classification				
over 0.6		Mean value	Variance	Skewness	Kurtosis	
0.5	11/05/2017	0.62972	0.31361	0.52028	0.26083	
over 0.5	21/05/2015					
	12/06/2015					
	01/07/2015	0.54139	0.37333	0.27639	0.25528	
	13/08/2015	0.52639	0.31806	0.35056	0.31444	
	09/09/2015	0.42111	0.36278	0.36333	0.29639	

Regression (yield, number of pears per tree)

over 0.6		Mean value	Variance	Skewness	Kurtosis
	11/05/2015	-0.12104	0.17494	0.57952	0.61796
over 0.5	21/05/2015				
over 0.4	12/06/2015				
0.05	01/07/2015	0.051739	-0.067606	-0.099876	0.02339
over 0.35	13/08/2015	0.33369	0.17382	0.34362	0.16762
	09/09/2015	-0.15193	0.19629	0.22777	0.14162

Regression (yield, weight of pears per tree)

	Mean value	Variance	Skewness	Kurtosis
11/05/2015	-0.36464	-0.26265	0.57641	0.45551
21/05/2015				
12/06/2015				
01/07/2015	0.060387	0.12788	0.080978	0.023766
13/08/2015	0.16699	0.29685	0.2957	0.21613
09/09/2015	0.078858	0.10918	0.19566	0.093726

Junicient	
cture	
	16b04
9n56 (13/08)	(01/07

15h35 (12/06)

Shape from shading based on Tensor decomposition

• Objective: retrieve <u>canopy structure</u> and <u>inherent leaf color</u> from multitemporal shading images

- Assumption (Reflection model)
 - Direct solar illumination is dominant
 - Leaves are under direct illumination

Dichromatic reflection $\rho(\lambda_i) = \mathbf{N} \cdot \mathbf{L} \ k(\lambda_i) + S_s(\mathbf{N}, \mathbf{L}, \mathbf{V})$

Simplification

$$\rho(x,t,\lambda) \approx \mathbf{N}(x) \cdot \mathbf{L}(t) \ k(\lambda)$$

Tensor decomposition for HS data

• Expansion of matrix decomposition to higher-order arrays

 \mathbf{a}_R

• Three-order array (canonical polyadic (CP) tensor decomposition)

 Examples 1: time-series of MODIS hyperspectral sensor (Alps during 2012 snow season) ⇒ abundance, endmember (snow, ice, debris, forest, etc.), temporal evolution

M.A. Veganzones, et. al., Nonnegative Tensor CP Decomposition of Hyperspectral Data, TGRS, vol. 54, no. 5, pp.2577-2588, 2016

• Example 2: multi-angle images of Compact Reconnaissance Imaging Spectrometer for Mars (outskirts of south permanent polar cap in Mars) ⇒ abundance, endmember, observation

M.A. Veganzones, et. al., Nonnegative CP Decomposition of Multiangle Hyperspectal Data: A Case Study on CRISM Observations of Martian Icy Surface, WHISPERS, 2016

Tensor decomposition for canopy shading

- Assumption
 - One endmember per canopy
 - Leaves are under direct sunlight
 - Direct illumination is dominant
 - Snapshot decomposition

Tensor decomposition for canopy shading

• Assumption

- One endmember per canopy
- Leaves are under direct sunlight
- Direct illumination is dominant
- Snapshot decomposition
- Multitemporal decomposition: multiple measurements within a day (different sun elevation L) are

possible

Tensor decomposition

- Tensor per canopy:
- Tensor decomposition
 - Multilinear rank-(Lr,Lr,1) terms, Lr=3
 - Retrieve N, L and k
 - Tensorlab 3.0 (111.m)
 - http://www.tensorlab.net
- Assumption
 - Canopy regions are given •
 - Multiple observation within a day is possible
 - Leaf color within canopy is homogeneous • (only endmember)
 - Structure (N) and Lambert coefficients (k) are stable
 - Most of leaves are under direct sunlight •

 $\rho(x,t,\lambda) \approx \mathbf{N}(x) \cdot \mathbf{L}(t) \ k(\lambda)$

- Constraints
 - **B** is identical (coupling) ٠
 - Lambert coefficients k are nonnegative •

хуz

 $\Delta = (\mathbf{A}_n |, \mathbf{B}_n | \mathbf{k}_n)$

Estimation of canopy structure

• Assumption

- Most of leaves are under direct illumination
- Canopy structure can be approximated by hemiellipsoid with parameter c (isotropic along x-, y-axes)

$$\frac{(x-x_c)^2}{R^2} + \frac{(y-y_c)^2}{R^2} + \frac{z^2}{c^2} = 1$$

- Estimation of c based on estimated **N** (A_i)
 - Uncertainty in order of elements (x,y,z)

```
\rho(x,t,\lambda) \approx \mathbf{N}(x) \cdot \mathbf{L}(t) \ k(\lambda)
```


1. Calculate average value per element

 $\bar{N_e^i}$ Average value of e-th element in A_i

2. Determination of z-element

 $\hat{z} = \operatorname{argmax} \bar{N}_e^i$

3. Use the maximum averaged value as a structural parameter

Height contour of hemielllipsoids c=0.5 600 0000 500 c=1.0 400 > 300 ⊦ 0000 200 c=2.0 $\mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$ $\overline{\langle}$ 100 50 100 150 200 250 Elements of surface normal z-axis S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

100 150

100 150

 $ar{N}^i_{\hat{z}}$

Estimation of canopy structure

• Assumption

- Most of leaves are under direct illumination
- Canopy structure can be approximated by hemiellipsoid with parameter c (isotropic along x-, y-axes)

$$\frac{(x-x_c)^2}{R^2} + \frac{(y-y_c)^2}{R^2} + \frac{z^2}{c^2} = 1$$

- Estimation of c based on estimated **N** (A_i)
 - Uncertainty in order of elements (x,y,z)

```
\rho(x,t,\lambda) \approx \mathbf{N}(x) \cdot \mathbf{L}(t) \ k(\lambda)
```


1. Calculate average value per element

 $\bar{N_e^i}$ Average value of e-th element in A_i

2. Determination of z-element

 $\hat{z} = \operatorname{argmax} \bar{N}_e^i$

3. Use the maximum averaged value as a structural parameter

Relationship between c and averaged values

 $ar{N}^i_{\hat{z}}$

Flow of canopy-scale parameter estimation

Simulation

- Simulated data
 - Daily change in solar elevation
 - 4 types of hemiellipsoid: A
 - 9 illumination conditions: B
 - 4 endmembers (5 bands): k
 - Specular reflection included

Generated images

8h00	10h00	12h00	14h00	16h00
••••				
	••••	••••		
	••••	••••	$\bullet \bullet \bullet \bullet$	
	••••	••••		

Simulation

- Simulated data
 - Daily change in solar elevation ٠
 - 4 types of hemiellipsoid: A ٠
 - 9 illumination conditions: B ٠
 - 4 endmembers (5 bands): k ۲
 - Specular reflection included ٠
- Tensor decomposition
 - Multilinear rank-(3,3,1) terms ٠
 - **B** (illmination matrix) is identical (coupling) ٠
 - Lambert coefficients **k** are nonnegative ۲

Estimation

Estimated Lambert coefficients

Relationship between c and $\ ar{N}^i_z$

average of SAM (rad)					
Endmember 1	0.1721				
Endmember 2	0.1367				
Endmember 3	0.0994				
Endmember 4	0.1721				

600

500

400

> ₃₀₀ |

200

100

x

600

500

400

300

200

100

>

Tensor decomposition of multispectral data

• Restrictions

- No multiple observations within a day (snapshot)
- Pixel-to-pixel registration between different days is not possible
- Snapshot decomposition
 - **b** is identical (coupling)
 - Lambert coefficients **k** are nonnegative

Results and Discussion

- Classification (nutrient treatments) accuracy
 - estimated Lambert coefficients < original averaged reflectance
- There is not significant difference in in-situ chlorophyll contents among different nutrient treatments

Chlorophyll measurement by Chlorophyll content meter CCM-200 plus (20 leaves per tree)

Mineral contents (50 leaves, middle trees of each plots, 3 tree per treatment)

over 0.6

over 0.5

		•				
Treatment		mg/100 g fresh weight				
	Ν	Р	К	Ca	Mg	
Treatment 1	3.2	0.27	1.45	1.1	0.36	
Treatment 2	2.9	0.25	1.40	1.0	0.35	
Treatment 3	3.0	0.28	1.57	1.1	0.37	
Treatment 4	3.0	0.27	1.44	1.2	0.38	
Target values	2.9- 3.7	0.2-0.5	1.5-2.5	0.9-2.0	0.25- 0.5	

Mav. 2015

Classification (overall accuracy, Multispec data) Mean value Variance Skewness Kurtosis 11/05/2017 0.62972 0.31361).52028 0.26083 0.364 01/07/2015 0.54139 0.37333 0.27639 0.25528 0.326 13/08/2015 0.52639 0.31806 0.35056 0.31444 0.301 09/09/2015 0.42111 0.36278 0.36333 0.29639 0.436

Harvest, 2015

Treatment	mg/100 g fresh weight				
	Ν	Ρ	К	Ca	Mg
Treatment 1	1.9	0.11	0.52	2.48	0.46
Treatment 2	1.9	0.13	0.61	2.37	0.46
Treatment 3	1.9	0.12	0.56	2.17	0.44
Treatment 4	1.9	0.12	0.57	2.29	0.46
Target values	2.0-2.5	> 0.14	> 0.90	> 1.50	> 0.23

ColorTreatmentCaNO3 (artificial)Slurry (organic)Digestant (organic)Liquid N (artificial)

Results and Discussion (cont.)

• Yield estimation

- No correlation between yields and leaf color
 - Hyperspecral observation in 2017
- Some correlation between yields and structure parameter
 - Not sufficient for reliable estimation
 - Lack of temporal analysis
 - Higher spatial resolution images (e.g., RGB, RE)

• Schedule

- Multitemporal data analysis for real data
- Hyperspectral analysis
- Fusion of multimodal data (RGB, RE, Multispectral, HS)
- Multitemporal observation within a day

Regression (yield, number of pears per tree)

	Mean value	k	k+ $ar{N}^i_{\hat{z}}$	$ar{N}^i_{\hat{z}}$
11/05/2015	-0.12104	0.172	0.126	0.377
01/07/2015	0.051739	0.031	0.147	0.267
13/08/2015	0.33369	0.017	0.356	0.311
09/09/2015	-0.15193	-0.104	0.322	0.424

Regression (yield, weight of pears per tree)

	Mean value	k	k+ $ar{N}^i_{\hat{z}}$	$ar{N}^i_{\hat{z}}$
11/05/2015	-0.36464	-0.029	-0.004	0.306
01/07/2015	0.060387	0.086	0.198	0.332
13/08/2015	0.16699	0.117	0.312	0.294
09/09/2015	0.078858	0.051	0.229	0.331

