DE LA RECHERCHE À L'INDUSTRIE

DÉTECTION DE GAZ PAR FILTRAGE ADAPTÉ CTMF EN IMAGERIE HYPERSPECTRALE DANS LE DOMAINE INFRAROUGE THERMIQUE

Cube hyperspectral HyTES du site Salton Sea (Etats-Unis)

AURÉLIE QUÉMÉNER (CEA), RODOLPHE MARION (CEA)

SFPT- GH Montpellier | 17-18 mai 2018

www.cea.fr

Contexte et objectifs

- Signatures des gaz CH_4 , NH_3 et C_2H_4
- Filtre de détection CTMF
- Etude des seuils de détection en IRT
 - Protocole de génération des images synthétiques
 - $-CH_4$
 - \blacksquare NH₃
 - $-C_2H_4$
- Détection de panaches sur images réelles
 - CH₄ : émission par des puits de pétrole (Kern River)
 - NH₃: dégagement naturel (Salton Sea)
 - C₂H₄ : émission contrôlée (Québec)
- Conclusions et perspectives

CONTEXTE ET OBJECTIFS

Etude des rejets gazeux industriels :

- Enjeux scientifiques (pollution, qualité de l'air, climat, etc.)
- Sécurité & Défense (caractérisation d'activités industrielles, etc.)

Imagerie hyperspectrale adaptée :

- Résolution spatiale (métrique ou décamétrique) → analyse locale à l'échelle des sites industriels
- Continuum spectral [7,5 12,0] µm et résolution spectrale de ≈ 20 nm → accès à plusieurs gaz (CH₄, NH₃, C₂H₄, CO₂, N₂O, SO₂, etc.)

Objectifs de l'étude présentée :

- Etude des seuils de détection de CH₄, NH₃ et C₂H₄
- Application sur des images réelles HyTES et TELOPS

Domaine spectral [7,5 - 12,0] µm

Transmittances de CH₄, NH₃ et C₂H₄ (simulations HITRAN à la résolution du capteur HyTES) Variations rapides des spectres en fonction de la longueur d'onde et absorptions localisées spectralement ⇒ Séparation gaz/surface

Conditions de simulations HITRAN :

- Modèle atmosphérique US Standard
- Température : 296 K
- Pression atmosphérique : 1 atm
- Profil Lorentzien des raies d'absorption
- Altitude : z = 0 km
- Chemin horizontal parcouru : L_{CH₄} = 10³ m

 $L_{NH_3} = 10^7 \text{ m}$ $L_{C_2H_4} = 10^{18} \text{ m}$

ÉQUATIONS DU TRANSFERT RADIATIF*

Sans panache

 $L_{off}(\lambda) = L_{atm}^{\uparrow}(\lambda) + L_{ground}(\lambda) T_{atm}^{\uparrow}(\lambda)$ Avec $L_{ground}(\lambda) = (1 - \rho(\lambda))B(\lambda, \theta_s) + \rho(\lambda) L_{atm}^{\downarrow}(\lambda)$

Avec panache

$$L_{on}(\lambda) = L_{atm}^{\uparrow}(\lambda) + L_{ground}(\lambda) T_{atm}^{\uparrow}(\lambda) T_{p}(\lambda) + L_{p}(\lambda) T_{atm}^{\uparrow}(\lambda)$$
$$L_{on}(\lambda) = L_{off}(\lambda) + n_{0} b(\lambda) [B(\lambda, \theta_{p}) - L_{ground}(\lambda)] T_{atm}^{\uparrow}(\lambda)$$

Différentiel de luminance

$$\Delta L(\lambda) = L_{on} (\lambda) - L_{off} (\lambda) = n_0 \ b(\lambda) [B(\lambda, \theta_p) - L_{ground}(\lambda)] T^{\uparrow}_{atm} (\lambda)$$
Densité dans la colonne de gaz
Signature spectrale du gaz

* Hulley, High spatial resolution imaging of methane and other trace gases with the airborne HyTES, AMT, 2016

DÉTECTION DES GAZ : FILTRE CTMF (CLUSTER-TUNED MATCHED FILTER*)

DE LA RECHERCHE À L'INDUSTRIE

PROTOCOLE DE GÉNÉRATION DES IMAGES SYNTHÉTIQUES

CH₄ : ÉTUDE DU SEUIL DE DÉTECTION

Figure 1 : différence de luminance au niveau du capteur sans et avec panache (bleu) et NEDL (rouge) de HyTES

Seuil de détection du CH₄: ~20 ppm.m

NH₃ : ÉTUDE DU SEUIL DE DÉTECTION

DE LA RECHERCHE À L'INDUSTRI

C₂H₄ : ÉTUDE DU SEUIL DE DÉTECTION

Figure 1 : différence de luminance au niveau du capteur sans et avec panache (bleu) et NEDL (rouge) de TELOPS

HYTES* : KERN RIVER, ETATS-UNIS

Site

Kern River Oil, Baskerfield, CA Plate-forme de forage, réservoirs

Date d'acquisition

8 juillet 2014

Géométrie de l'image Altitude de l'avion/sol : 1,040 km Taille pixel = 1,9 mCoordonnées : 35,52N ; 119,09O

Détection Méthane CH₄

Vérité terrain De 500 à 1500 ppm.m

(Thompson & al, Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane, 8,4383-4397,2015)

* HyTES : [7,5 -12,0] µm, 256 bandes, Image hyperspectrale résolution spectrale \approx 18 nm.

DE LA RECHERCHE À L'INDUSTR

Cea

HYTES : SALTON SEA, ETATS-UNIS

Site

Mullet Island, Salton Sea, CA Présence de fumerolles de NH₃

Date d'acquisition

6 juillet 2014

Géométrie de l'image

Altitude de l'avion/sol : 1,1 km Taille pixel = 2,05 m Coordonnées : 33,24N ; 115,900

Détection Ammoniac NH₃

Vérité terrain

Minimum détectable : 20 ppm.m (Tratt & al, Remotely sensed ammonia emission from fumarolic vents associated with a hydrothermally active fault in the Salton Sea Geothermal Field, JGR, 2011)

Image hyperspectrale Détection de fumerolles de NH₃

TELOPS* : QUÉBEC

Site Québec, Canada

- Date d'acquisition
- Géométrie de l'image Altitude de l'avion/sol: 685 m Taille pixel = 16,4 m Coordonnées : 46,80N ; 71,330

Détection

Dégagement de C₂H₄ sous émission contrôlée

Vérité Terrain 500 ppm.m

(Idoughi & al, Background Radiance for Gas Plume Quantification for Airbone Hyperspectral Thermal Imaging, Hindawi, 2016)

*TELOPS : $[7,7 - 11,8] \mu m$, 85 bandes, résolution spectrale 0,25 cm⁻¹

Image Google Earth

CONCLUSIONS ET PERSPECTIVES

Conclusions

- Détection des 3 gaz (CH₄, NH₃ et C₂H₄) dans le domaine [7,5 12,0] µm
- Discussion sur les seuils de détection
- Détection sur des images réelles (émissions industrielle, naturelle et contrôlée)

Perspectives

- Affiner les seuils de détection pour ces gaz et autres dans le domaine IRT (SO₂, NO₂, H₂S, etc.)
- Fausse détection (2 gaz absorbent dans la même région spectrale)
- Quelle domaine spectral privilégier si un gaz signe en bande I et en bande III?
- Passage de CTMF en quantification (inversion du débit d'émission des sources)

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 XX XX XX XX | F. +33 (0)1 XX XX XX XX

Direction Département Service

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019