ONERA

 J_{Ω}

THE FRENCH AEROSPACE LAB

www.onera.fr

Détection et suppression des cirrus en imagerie hyperspectrale [0.4 – 2.5 µm]

17-18 Mai 2018

Sandra Salgado ^{1,2}, Laurent Poutier ¹, Xavier Briottet ¹, Sandrine Mathieu³

1 : ONERA The French Aerospace Lab, Toulouse

2 : Université Fédérale Toulouse Midi-Pyrénées, Toulouse

3 : Thales Alenia Space, Cannes

1. Contexte - Introduction

2. Matériel et méthode

1.Les cirrus

2. Principe de la détection

3. Principe de la suppression des cirrus

4.Données utilisées

3. Résultats

1.Détection des cirrus

2.Suppression des cirrus

4. Perspectives

* Poutier L., Miesch C., Lenot X., Achard V. and Boucher Y., « COMANCHE and COCHISE : two reciprocal atmospheric codes for hyperspectral remote sensing », 2002

Contexte

Nuages ≈ 2/3 de la couverture terrestre globale

 Atténuation / Occultation Eclairement solaire direct
Augmentation des termes de diffusion

- Augmentation des termes de diffusion (piégeage radiatif)
- Atténuation dans les zones d'ombre

Zone sans obstacle : Contributions de l'environnement modifiant l'éclairement

- Zone dans l'ombre du nuage : Plus d'éclairement direct
- Zone invisible pour le capteur, cachée par le nuage : rayonnement montant bloqué
- Zone traversée par un cirrus : modification de tous les termes

Contexte

But : Appliquer une correction atmosphérique à des images hyperspectrales contenant des cirrus

Contexte

But : Appliquer une correction atmosphérique à des images hyperspectrales contenant des cirrus

Comment détecter et supprimer les cirrus ?

Matériel et méthodes

1- Les cirrus

Caractéristiques des cirrus

Cirrus vu de la Terre

Cirrus vu depuis le capteur AVIRIS

Caractéristiques des cirrus

Cirrus vu de la Terre

Cirrus vu depuis le capteur AVIRIS

- Nuages les plus répandus dans l'atmosphère : 20-50%
- Haute troposphère / Basse stratosphère
 - Base : > 7 km en latitude moyenne (> 9 km en régions tropicales)
 - Epaisseur : 0.5 à 5 km
 - Semi-transparents → laissent entrevoir la surface sous-jacente
- Composés de cristaux de glace (> 5µm)

Matériel et méthodes

2- Principe de la détection des cirrus

Principe de la détection des cirrus

[1] Bo Cai Gao and al., 'An algorithm using visible and 1,38-µm channels to retrieve cirrus cloud reflectances from aircraft and satellite data", IEEE Transactions on Geoscience and Remote Sensing, Vol.40, No.8, 2002

[2] Bo-Cai Gao and Yoram J. Kaufman, "Selection of the 1.375-µm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space.", American Meteorological Society, 4231-4237, 1995

[3] E. Ben Dor, « A precaution regarding cirrus cloud detection from airborne imaging spectrometer data using the 1.38 µm water vapor band », Remote Sensing Environment, 50, pp. 346-350, 1994

ONERA

THE ERENCH APPOSPACE LAT

Principe de la détection des cirrus

 ρ^* = réflectance apparente

1: R. Richter and D. Schläpfer, « Atmospheric / Topographic Correction for Airborn Imagery », ATCOR-4 User guide, version 7.0.3, 2016

Principe de détection des cirrus - Simulations

Principe de détection des cirrus - seuils

Principe de détection des cirrus - seuils

Matériel et méthodes

3- Principe de la suppression des cirrus

 $\rho^*(\lambda) = \rho_c(\lambda)$ Réflectance du

Réflectance du cirrus

Surface virtuelle

Réflectance de la surface $\rho^*(\lambda) = \rho_c(\lambda) + T_c \rho_s(\lambda)$

Réflectance du cirrus

Transmission du cirrus

ONERA

Réflectance de la surface 1 $\rho^*(\lambda) = \rho_c(\lambda) + T_c \rho_s(\lambda) \frac{1}{1 - S_c \rho_s(\lambda)}$

Réflectance du cirrus

Transmission du cirrus Albédo du cirrus

Réflectance de la surface 1 $\rho^*(\lambda) = \rho_c(\lambda) + T_c \rho_s(\lambda) \cdot \frac{1}{1}$ $-S_c \rho_s(\lambda)$ Réflectance du Transmission Albédo du

Réflectance du cirrus Transmission du cirrus Albédo du cirrus

• Simplification 1 : albédo faible

Réflectance de la surface 1

Albédo du

cirrus

Réflectance de la surface 1 $\rho^*(\lambda) = \rho_c(\lambda) + T_c \rho_s(\lambda) \cdot \frac{1}{1 - S_c \rho_s(\lambda)}$ Réflectance du

Réflectance du cirrus Transmission du cirrus

Albédo du cirrus

 $\rho^*(\lambda) \approx \rho_c(\lambda) + T_c \rho_s(\lambda)$ $T_{c}\rho_{s}(\lambda) \approx \rho^{*}(\lambda) - \rho_{c}(\lambda)$

Réflectance de la surface 1 $\rho^*(\lambda) = \rho_c(\lambda) + T_c \rho_s(\lambda) \cdot \frac{1}{1 - S_c \rho_s(\lambda)}$ Réflectance du Transmission Albédo du cirrus du cirrus cirrus

 $\rho^*(\lambda) \approx \rho_c(\lambda) + T_c \rho_s(\lambda)$ $T_{c}\rho_{s}(\lambda) \approx \rho^{*}(\lambda) - \rho_{c}(\lambda)$

Simplification 2 : Transmission ≈ 1

Gao (1998) : système à 2 couches :

Réflectance de la surface 1 $\rho^*(\lambda) = \rho_c(\lambda) + T_c \rho_s(\lambda) \frac{1}{1 - S_c \rho_s(\lambda)}$ Réflectance du Transmission Albédo du du cirrus cirrus cirrus $\rho^*(\lambda) \approx \rho_c(\lambda) + T_c \rho_s(\lambda)$

$$\rho_s(\lambda) \approx \rho^*(\lambda) - \rho_c(\lambda)$$

Gao (1998) : système à 2 couches :

• Simplification 3 : linéarité $\rho_c(\lambda)$ et $\rho_c(1.38 \mu m)$

THE ERENCH APPOSPACE LAT

Principe de suppression des cirrus – domaine [0.4 – 1 µm]

$$\rho_s(\lambda) \approx \rho^*(\lambda) - \frac{\rho_c(1.38 \mu m)}{K_a}$$

2 types de scènes

- <u>Eau</u> : ρ*(1.38 μm) VS ρ*(1.24 μm)
 - (1.24 et 1.38 μm : absorption de la glace similaire $\,$ / 1.38 μm effets absorption eau)

•**Terres émergées** : ρ*(1.38 μm) VS ρ*(0.65 μm)

(pour pixels dont NDVI > 0.4)

• (Réflectance végétation uniforme spatialement et faible vers 0.65 µm)

AVIRIS : Airborne Visible InfraRed Imaging Spectrometer.

Nombre de bandes	Domaine spectral (µm)	Largeur de bande à mi- hauteur	Hauteur de vol (km)	Taille des pixels
224	0.38 – 2.5	~10 nm	20	~ 17m

Images avec différents nuages / différentes surfaces

14 Juillet 2009, Virginie (US)

21 Octobre 2014, Santa Barbara, Californie (US)

1 Juin 2015, Yosemite Parc, Californie (US)

29 Juillet 2009, Wisconsin (US)

Résultats

1- Détection des cirrus

Résultats – Masques détection

Image AVIRIS RGB. Surface = mer

Résultats – Masques détection

Séparation cirrus / fond

Résultats – Masques détection

THE FRENCH AEROSPACE LAB

Image en couleur

Image en couleur et dans la bande à 1.38 μm

Image en couleur et dans la bande à 1.38 µm

Résultats

2 – Suppression des cirrus

Au dessus de la mer :

Image originale

Au dessus de la mer :

Image originale

Avant/Après correction - Surface : mer

SFPT-GH 17-18 Mai 2018

Après suppression des cirrus

des cirrus

Correction d'un cirrus épais \rightarrow tâche sombre

Evaluation et validation des méthodes de l'état de l'art sur diverses images AVIRIS

ONERA

FRENCH APPOSPACE LA

Simplifications de l'état de l'art validées par des simulations

Perspectives

 Approfondir les recherches pour une méthode de suppression des cirrus dans le domaine [1.0 – 2.5 µm]

- Détection des nuages d'eau (en cours)
- Détection et correction des ombres
- Compréhension des effets radiatifs des nuages

Merci pour votre attention

POSPACE LAB

- Dor E.B., « A precaution regarding cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band », Remote Sensing Environment, 50, pp. 346-350, 1994
- Gao B.C. and Goetz A. F. H., « *Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band* », Geophysical Research Letter, Vol. 20, No. 4, pp. 301-304, 1993
- Gao B.C, Kaufman Y.J., Han W. and Wiscombe W.J., "Correction of thin cirrus path radiances in the 0.4-1.0µm spectral region using the sensitive 1.375 µm cirrus detecting channel", Journal of Geophysical Research, Vol. 103, No. D24, pp.32,169-32,176, 1998
- Poutier L., Miesch C., Lenot X., Achard V. and Boucher Y., « COMANCHE and COCHISE : two reciprocal atmospheric codes for hyperspectral remote sensing », 2002
- Richter R. and Schläpfer D., « Atmospheric / Topographic Correction for Airborn Imagery », ATCOR-4 User guide, version 7.0.3, 2016

THE FRENCH AEROSPA

Test avec plusieurs Ka

Avant/Après correction - Surface : mer

Gao B.C and Li R.R., « *Removal of thin cirrus scattering effects in Landsat 8 OLI Images using the cirrus detecting channel »,* Remote Sensing, 9, 834, 2017