

Hyperspectral infrared imaging of volcanic plume at Mt Etna during IMAGETNA campaign

<u>S. Payan⁽¹⁾</u>, C. Segonne⁽²⁾, N. Huret⁽²⁾, G. Salerno⁽³⁾, V. Catoire⁽²⁾, T. Roberts⁽²⁾, A. La Spina⁽³⁾, T. Caltabiano⁽³⁾

- (1) LATMOS, CNRS, Sorbonne Université, Paris, France
- (2) Orléans University and LPC2E/CNRS, Orléans, France
- (3) Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy

17 May 2018 – Colloque Groupe Hyperspectral SFPT-GH, 17-18 mai 2018 – Montpellier.

• Context :

- Know more about the composition and spatial evolution of volcanic plume, to have insights of the processes occurring inside the Earth.
- Explore the potential of hyperspectral infrared imaging which is a new technology now available.
- Campaign at Mt Etna
 - > 21-25 June 2015
 - Pizzi De Neri observatory

Instrumentation involved

		check the
Instruments	Characteristics	calibration
HyperCam IR imager Telops company	[7.7 – 11.8] μm, spectral resolution 2 cm ⁻¹ , 320 x 256 pixels	imager IR spectra
OPAG 33 FTIR Bruker company	$[3.5 - 14] \ \mu m$, spectral resolution 1 cm ⁻¹ 1 pixel	Comparison
UV camera INGV	SO ₂ Slant column densities (Mori and Burton, 2006)	of UV and IR SO ₂ Slant
		Column Densities

• And two other IR imagers:

Filament imager ONERA <i>Under development</i>	$[3-5]~\mu m$, 24 bands 56 x 56 pixels , 10 cm $^{-1}$, IFOV 1.1 mrad , 100 Hz
SIBI imager ONERA <i>Under development</i>	[3.7 – 4.8] μm, spectral resolution 15 cm ⁻¹ 640 x 512 pixels , IFOV 1.6 mrad

Chack the

HyperCam IR imager (Telops company)

- Datacubes (3D)
 - \rightarrow 2 spatial dimensions
 - \rightarrow 1 spectral dimension

(Acquisition time: 2.5 seconds / datacube ; Resolution2 cm⁻¹)

 O_3 lines of the atmosphere are visible

In this study we focus on SO₂ spectral region 1100 – 1200 cm⁻¹

HyperCam IR-FTIR OPAG Comparison

- The OPAG FTIR pixel ~ 930 pixels of HyperCam
- Good agreement between OPAG FTIR spectrum and HyperCam mean spectra

HyperCam instrument provides good calibrated spectra

Retrieval approach

- Line by line radiative transfer model associated with the LARA inversion algorithm (Payan et al. 1998, 2010)
- \Rightarrow Previously used for limb IR balloon spectroscopy and IASI satellite measurements analysis
- Inputs:
- \Rightarrow HITRAN 2012: spectroscopic parameters
- \Rightarrow T and H₂O vertical profiles: Trapani meteorological balloon sounding and ECMWF Era-Interim

line of sight up to 80 km crossing 43 layers

• For SO₂ : Full physic retrievals

State vector = H_2O , CO_2 , O_3 , N_2O , CO, CH_4 , SO_2 , Plume parameters

- Spectral and altitude dependency of the plume optical thickness : τ (λ , z)
- $\Delta T = T_{plume} T_{atmosphere}$
- Altitude of the plume center,
- Plume thickness

SO₂ window easily fitted with LARA model

SO₂ Slant Column Density Results

SO₂ slant column density (ppm.m) - 20150626 – 08:27:45 Reduced χ^2 values of SO₂ retrieval S02 [ppm.m] Vertical pixels Vertical pixels Density of Column Horizontal pixels Horizontal pixels

Reduced χ^2 is mostly ≤ 5 \rightarrow Good quality of retrieval

Comparison of SO₂ IR and UV SCDs

• Simultaneous sequence 20150626 – 082743 UTC

Same SO₂ dilution structures observed by both instruments

Comparison of SO₂ IR and UV SCDs

HyperCam

SO₂ Slant Column Density retrieved in the IR

0 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000 30000 40000

250 to 1125 1125 to 1625 1125 to 1625 S02 Column density (ppm.m)

Strong differences between the UV SO₂ SCD and IR SO₂ SCD values

UV Camera

SO₂ Slant Column Density retrieved in the UV

SO₂ IR : SO₂ UV SCDs correlations

Factor > 6 in dense plume

Sensitivity tests on plume parameters for SO₂ SCD IR retrieval

Plume parameters	Plume thickness	ΔΤ
Reference configuration	400 m	1К
Tested values	65 m	0,5 K
	200 m	5 K
	600 m	10 K

From previous correlation we investigate two regions:

Diluted plume

Dense plume

Sensitivity tests - Results

<u>Reference configuration</u> Thickness: 400m ; $\Delta T = 1K$

Toward Near Real Time Calculation ?

- Simple classification based on radiative caracteristics of spectra (Brightness temperature)
- > $T_i = A \sigma_i + B$ > $T_{moy} = (\Sigma T_i) / N$

classe [B] = 1 K classe [T_{mov}] = 1K

Conclusion and next steps

- HyperCam IR hyperspectral imager is relevant for volcanic plume studies
- <u>Sensitivity tests</u>:

 \Rightarrow For diluted plume SO₂ SCD is not sensitive to assumptions made in our IR retrievals

<u>UV & IR comparison:</u>

 \Rightarrow Strong differences with underestimation of SO₂ SCD in the UV by a factor 4 in the diluted plume

 \Rightarrow Has already been highlighted by Kern et al., JGR, 2012 (radiative transfert, UV spectroscopy) and Boichu et al., ACP, 2015 (SO₂ fluxes, IASI measurements, UV ground-based)

<u>To go further</u>:

- Develop NRT retrieval approach : any ideas ?
- Latest campaign: September 2017 (Mt Etna and Stromboli)
 IR hyperspectral imager (HyperCam) and a solar occultation FTIR (LOA, Lille)
 - \Rightarrow Investigate aerosols and ash type and composition \rightarrow better analysis of dense plume measurements
- Explore potential of IR hyperspectral imaging to map other species in volcanic plumes : SiF₄, CO₂, OCS, CH₄, ...

Acknowledgment

- Labex Voltaire (ANR-10-LABX-100-01) and French program LEFE-CHAT, for funding the project
- INGV for providing great conditions of work during the campaign

Supplement

• Aerosols contribution parametrization:

