

Evaluation et correction du straylight dans la chaîne opérationnelle du spectromètreimageur multispectral OLCI

N. Lamquin, L. Bourg, L. Blanot, S. Clerc ACRI-ST, Sophia Antipolis

ACRI-ST | N. Lamquin | SFPT-GH colloquium | 05/2018 | 1

Sentinel-3 mission and OLCI

- Sentinel-3: measure sea surface topography, sea and land surface temperature, and ocean and land surface colour with high accuracy and reliability to support ocean forecasting systems, environmental monitoring and climate monitoring
- **S3A:** Feb 16th 2016
- **S3B**: Apr 25th 2018
- Revisit < 2 days

- OLCI: Ocean and Land Colour Instrument
- VNIR, 21 bands
- GSD: 300 m at nadir (FR)
- Swath width: 1270 km
- 5 cameras, tilt to avoid glint

Antarctica - Sentinel-3B's very first sight https://www.eumetsat.int/website/home/News/DAT_3912999.html

- OLCI straylight characteristics
 - Sources of straylight
 - On-ground characterization
- OLCI straylight correction algorithm
 - Principle and MERIS heritage
 - Implementation and performance aspects
- OLCI straylight results
- Comparison to requirements
- Conclusions

OLCI Straylight characteristics: sources

- As all spectro-imagers, OLCI is very sensitive to straylight
- Straylight sources:
 - Imaging optics
 - Straylight higher at short wavelengths
 - Spectrometer
 - Dominant term (10 times contribution from imager)
 - Straylight increases at long wavelengths
 - CCD above 900 nm (B20, B21)
 - NIR scatter straylight

Ratio spectrometer straylight / total signal for 3 spatial regions, as a function of wl

OLCI Straylight characteristics: characterization

On-ground characterization methodology

- Simulation with ray tracing to generate PSF
 - The simulation uses the ground characterization database for each camera
 - Simulations at several wavelengths and positions in the Field of View
- The Straylight PSF is obtained by subtracting the straylight-free PSF (no scatter, no reflections) from the full simulation PSF

- Correction algorithm
 - Correction applied for each component following the light path backwards (spectrometer (including CCD) then imaging optics)
 - Spectrometer correction (for each camera)
 - 1D-spatial x 1D-spectral whole CCD image rebuilt ([390, 1040] nm at 1.25 nm resolution)
 - Ground Imager correction
 - 2D spatial (across-track x along-track) convolutions (mixing of energy from the whole FOV, no spectral mixing)

OLCI Straylight correction algorithm

• Correction algorithm

• Spectro correction

- First the CCD spectral x spatial image is recreated (using spectral interpolation) at 1.25 nm
- The CCD is decomposed in N x M regions in the spectral x spatial domain. The straylight PSF is characterized for each subregion
- To apply the correction, the image is split in N x M copies images
- The relevant PSF is applied to each subregion
- Then the contributions for each subregion are summed up to get the full CCD image
- Straylight contribution is removed from the signal

OLCI Straylight correction algorithm

- Correction algorithm
 - Imager correction
 - Less impacting total SL
 - Same principle applied to the 2D spatial image, but linear interpolation between straylight PSF is not needed: use nearest neighbour
 - Implementation details:
 - Need to manage margins (use of data from neighbouring cameras/granules) and boundary conditions
 - Use of prior/next granules for imager (along-track dimension) SL correction
 - Use of adjacent cameras for imager and spectrometer SL correction

• CPU Performance aspects

- Main impact is on the spectro correction
- Optimization has been extensively studied

Approach	Efficiency	Remark
GPU (Graphical Processing Unit)	++	Reduced portability
Parallelization / multi-threading	+	Optimization of number of threads vs size of kernel
FFT mathematical libraries	+/++	Licensing issues
Sub-sampling	+/++	Optimization of sub-sampling parameters

Factor 12 in CPU time (6 h vs 30 min) between no sub-sampling and high sub-sampling

OLCI Straylight results

• First results

- Tests on highly contrasted image of the straight of Gibraltar
- L1 TOA radiance B21 (1020 nm), worst case

No straylight correction (contrast on small radiances): most effect across-track (spectro mainly impacts)

Straylight correction, **no** sub-sampling: still some SL, correction under-estimated at B21

Straylight correction, **moderate** sub-sampling: introduces slight artefacts

OLCI Straylight results

Straylight correction, **strong** sub-sampling: introduces stronger artefacts over-correction of first pixels

OLCI Straylight results

Straylight from land side induces an increase of the radiometry over the water side

• First results

ESA requirement on Stray-light correction:

21

• Straylight correction efficiently restores expected radiometry level over ocean except on no req. zone

- Spatial sub-sampling improves CPU time but at the price of a less efficient correction near the transition zone
 - Far from the transition, correction is always beneficial
 - Need to trade between CPU time constraints and accuracy: fine-tuning for OLCI in progress
 - Spectral sub-sampling (not shown here) has less impact: can be used more systematically (latest configuration: NS_SP=5, NK_SP=6)

• A correction algorithm similar to OLCI's may be appropriate for CHIME (Copernicus Hyperspectral Imaging Mission for the Environment, candidate for a future sentinel, currently in phase A)

• Need to establish a straylight correction strategy from the start

- Modelling of straylight PSF
- Characterization of instrument straylight performance
- Early validation of straylight correction algorithm

• Sub-sampling is an efficient way to optimize the processing time

- Optimal choice of spectral/spatial sub-sampling parameters is missiondependent
- Need to keep flexibility on sub-sampling parameters for future optimization

Thank you

ACRI-ST | N. Lamquin | SFPT-GH colloquium | 05/2018 | 24

Back-up slides: impact at Level 2

ACRI-ST | N. Lamquin | SFPT-GH colloquium | 05/2018 | 25

LEVEL 2

GREEN=LANDS BLACK SPOT = CLOUD FLAG

Water Leaving Reflectance Oa06

LEVEL 2

GREEN=LANDS

BLACK SPOT = CLOUD FLAG

Water Leaving Reflectance Oa06

