

Calibration des données spectrales Rosetta/VIRTIS-H

F.Andrieu, S. Érard, D. Bockelée-Morvan LEISA, Observatoire de Paris

Colloque scientifique de la sfpt-gh, Montpellier, France, 17-18 Mai 2018

Outline:

Introduction

- VIRTIS-H design and data
- Stray light
- Stray light correction: easy case
 - Correction in backup mode
 - First corrections in nominal mode
- Stray light variability
 - Geometrical variations
 - Stray light in the darks
- Stray light correction in nominal mode
 - Models of stray light
 - Final correction

Virtis-H design

Virtis-H detector

436 px

Introduction Corrections in backup mode Variability Final correction Conclusion

Virtis-H detector

436 px

Introduction Corrections in backup mode Variability Final correction Conclusion

Virtis-H detector

436 px

Virtis-H detector

HgCdTe Raytheon/IRCOE matrix

Introduction Corrections in backup mode Variability Final correction Conclusion

Virtis-H detector

436 px

Introduction Corrections in backup mode Variability Final correction Conclusion

Building a spectrum

436 px

HgCdTe Raytheon/IRCOE matrix

Building a spectrum

Building a spectrum

Building a spectrum

Building a spectrum: hopes & dreams

AST2/RAW/H1_00237396920.QUB

Building a spectrum: hopes & dreams

AST2/RAW/H1_00237396920.QUB

Building a spectrum: hopes & dreams

The hard truth:

The illuminated matrix does not look like this...

The hard truth:

... But like this

MTP015/STP054/RAW/H1_00389083498

Introduction Corrections in backup mode Variability Final correction Conclusion

The hard truth:

A calibrated spectrum with no signal does not always look like this...

F. ANDRIEU et al. : VIRTIS-H Calibration improvements, Colloque scientifique de la stpt-gh, Montpellier, France, 17-18 Mai 2018 18

The hard truth:

Best solution so far:

- 1) Extracting typical straylight pattern: masking & nearest neighbors filling in a backup cube
- 2) Convert to a spectrum

3) Scale the straylight spectrum to remove it from the measure

As is

1) Extracting typical straylight pattern: masking & nearest neighbors filling in a backup cube

MTP015/STP054/RAW/H1_00389083498

1) Extracting typical straylight pattern: masking & nearest neighbors filling in a backup cube

MTP015/STP054/RAW/H1_00389083498

1) Extracting typical straylight pattern: masking & nearest neighbors filling in a backup cube

MTP015/STP054/RAW/H1_00389083498

2) Convert this straylight into a spectrum:

MTP015/STP054/RAW/H1_00389083498

2) Convert this straylight into a spectrum:

2) Convert this straylight into a spectrum:

3) Scale the straylight spectrum and remove it from the measure

3) Scale the straylight spectrum and remove it from the measure

3) Scale the straylight spectrum and remove it from the measure

3) Scale the straylight spectrum and remove it from the measure

3) Scale the straylight spectrum and remove it from the measure

Without a backup cube (most of the time):

Without a backup cube (most of the time):

Without a backup cube (most of the time):

Without a backup cube (most of the time):

Preliminary conclusions:

- From backup cube, straylight can be well corrected
- BUT: not so many backup cubes with straylight available

- Without backup a scaling of a typical straylight is NOT enough

- Backup and nominal cubes from different mission phases are need to be studied to get the evolution of stray light with time and geometry.

- finer scaling methods may be necessary

T1_00402358355 CALIBRATED at 3.0987 µm (order=3)

T1_00402358355 CALIBRATED at 3.0987 µm (order=3)

T1_00402358355 CALIBRATED at 3.0994 µm (order=2)

T1_00402358355 CALIBRATED at 3.0994 µm (order=2)

T1_00402358355 CALIBRATED at 3.0994 µm (order=2)

Strayligth is most probably caused by a <u>reflexion</u> on the slit in particular conditions

T1_00402358355 CALIBRATED at 3.0994 µm (order=2)

Strayligth is most probably caused by a <u>reflexion</u> on the slit in particular conditions

> But wait, **There's more**

T1_00396877876 CALIBRATED at 3.0987 µm (order=3)

T1_00396877876 CALIBRATED at 3.0994 µm (order=2)

T1_00396877876 CALIBRATED at 3.0994 µm (order=2)

T1_00396877876 CALIBRATED at 3.0994 µm (order=2)

F. ANDRIEU et al. : VIRTIS-H Calibration improvements, Colloque scientifique de la sfpt-gh, Montpellier, France, 17-18 Mai 2018 47

T1_00396877876 CALIBRATED at 3.0994 µm (order=2)

F. ANDRIEU et al. : VIRTIS-H Calibration improvements, Colloque scientifique de la sfpt-gh, Montpellier, France, 17-18 Mai 2018 48

T1_00396877876 CALIBRATED at 3.0994 µm (order=2)

T1_00396877876 CALIBRATED at 3.0994 µm (order=2)

T1_00396877876 DRK at 3.0994 µm (order=2)

T1_00396877876 DRK at 3.0994 µm (order=2)

T1_00396877876 RAW+DARK at 3.0994 µm (order=2)

T1_00396877876 RAW+DARK at 3.0994 µm (order=2)

T1_00396877876 RAW+DARK at 3.0994 µm (order=2)

Stray light in the darks

- Detected in (some) dark measurements and visible in both interpolated and original darks

- ... but not in sky measurement at the same location

Interpretation:

Stray light in general related to a reflexion in the vicinity of the slit

Input direction depends on shutter status (stray light in dark happen in different conditions)

We should be able to correct it the same way as regular stray light

General method for removing stray light :

Find the closest (in time) model of stray light
 23 models for regular

4 models for stray light affecting the darks (harder to detect, noisier

2) Scale it order by order

3) Remove the scaled model to the observation

Examples of stray light measurements and models

F. ANDRIEU et al. : VIRTIS-H Calibration improvements, Colloque scientifique de la sfpt-gh, Montpellier, France, 17-18 Mai 2018 58

Examples of stray light measurements and models

F. ANDRIEU et al. : VIRTIS-H Calibration improvements, Colloque scientifique de la sfpt-gh, Montpellier, France, 17-18 Mai 2018 59

F. ANDRIEU et al. : VIKIIS-H Calibration improvements, Colloque scientifique de la stpt-gn, Montpellier, France, 1/-18 Mai 2018 63

- Stray light can be corrected (first order) in every observation

- 3 codes for correcting stray light are available
1 for a quick correction of a complete VH cube
1 for a best possible correction (tries every stray light model, almost finished)

1 for single spectra correction

Perspectives:

We can now compare VH and VM on the 3.2µm band

