HypsimMars : a tool for simulating hyperspectral images for Martian <u>3D scenes</u>

Sylvain Douté, IPAG (sylvain.doute@univ-grenoble-alpes.fr) <u>Mauro Dalla Mura</u>, Gipsa-Lab Ruben Marrero Miguel Veganzones

SIMULATING (HYPERSPECTRAL) IMAGES OF MARTIAN 3D SCENES

- developing and testing methods for the correction of atmospheric
 and photometric effects images taken by orbiter around Mars
- developing and testing methods for the linear and nonlinear spectral unmixing applied to hyperspectral images.

- understanding the phenomenology of image formation
 - ✓ factors that control the spectrophotometric of a pixels resulting from the aggregation of physical signals at different subpixel scales.

HYPSIMMARS : A TOOL WITH A HIGH DEGREE OF REALISM :

- ✓ high resolution DEM,
- \checkmark description of material distribution with fractal characteristics,
- ✓ BRF measured in the laboratory for a series analogue materials, or derived from CRISM,
- ✓ mixing of spectral signatures at different scales,
- ✓ 3D radiative transfer between atmosphere and surface (fluxes and radiances).

Operational scheme of HYPSIMARS

Generating realistic abundance maps using a cellular automaton

- ✓ reproducing some planetary transport and mixing processes for achieving fractal properties as expected for real scenes in nature
- ✓ iterative process starting with seeds of pure materials distributed within the scene
- probability of mixing, exchange, and no change (topographically controlled)
- ✓ distribution of the endmembers controlled by defining the seeds, the different probabilities for each action, the size of the neighborhood window, and the total number of iterations.

Mesures spectro-photométriques de laboratoire

Paramètres photométriques Hapke évalués

Propriétés spectro-photométriques des mélanges granulaires

Etude des règles de mélange des paramètres photométriques $(w_r, b_r, c_r, \overline{\theta}_r)$ de chaque composant *r* de fraction f_r :

S Douté, SFPT-GH, Montpellier 2018

Résultats expérimentaux

Paramétrisation mathématique

Obtention et analyse de produits spectro-photométriques CRISM

Computation of geometrical and illumination conditions

Geometrical conditions of the simulation.

 $= \rho_{BOA}$

Reflectance factors: bidirectional ρ^{dd} hemispherical directional ρ^{hd} Lambertian ρ_L

Signal measured by the sensor.

total reflected by surface-atmosphere :

 $\rho_{TOA} = \rho_{ATM} + \rho_{BOA} (\exp(-\tau/\mu) + G_d)$

Atmospheric and radiometric correction of real images

The simulator generates the BOA image ρ_{BOA}^{j} the map of the path radiance D_{s}^{j} and the map of combined direct and diffuse transmission $(\exp(-\tau_{j}/\mu) + G_{d}^{j})$ to the sensor with an AOD τ^{j} varying between 0.1 and 1.5. S Douté, SFPT-GH, Montpellier 2018

Simulating well controlled HS images for testing

spectral unmixing methods

Typical Martian dust locally mixed with basalt, nontronite, and olivine

Abundance map

Simulated TOA HS image

BOA normalized reflectance HS image

Conclusion

Un outil pour approfondir l'exploitation des images (hyperspectrales) planétaires

- MNT haute résolution (horizontale 10m.pixel-1 et verticale 10m sur des aires ≈1000 km2.)
- cartes d'abondances réalistes
- cartes de propriétés spectro-photométriques de surface résultant de processus de mélange multi-échelle
- correction des effets photométriques et atmosphériques
- Base de données d'images hyperspectrales synthétiques pour tester les méthodes d'analyse.

Perspectives

- A better physics for the treatment of :
 - ✓ adjacency effects,
 - ✓ downward irradiance resulting from the multiple scattering between the atmosphere and the surface (E_coupling),
 - ✓ diffuse 3D transmission of the radiance leaving the surface to the sensor.
- A better computing for the treatment of :
 - ✓ geometrical intersections (k-d trees representation of DEM)
- > 3D Monte Carlo radiative transfer model