Impact de la résolution spatiale pour l'identification d'essences forestières en milieu tempéré à partir d'une image hyperspectrale du domaine réflectif

Thierry Erudel¹, Philippe Déliot², Sophie Fabre², Xavier Briottet², Jean-Baptiste Féret³, Mathieu Fauvel¹, Harold Clénet¹, David Sheeren¹

> ¹Lab. DYNAFOR, UMR INRA-Toulouse INP ²ONERA - The French Aerospace Lab ³Lab. TETIS, UMR Cirad-IRSTEA-CNRS-AgroParisTech

Colloque Groupe Hyperspectral SFPT-GH 6^{ème} édition, Montpellier, France 17-18 mai 2018

Contexte et objectifs

2 Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Contexte et objectifs

Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Contexte

• Projet HyperBio (TOSCA CNES)

- simulation d'un capteur satellite (HYPXIM),
- identification d'essences,
- caractérisation de la biodiversité.

< ロ > < 回 > < 回 > < 回 > < 回 >

Contexte

• Projet HyperBio (TOSCA CNES)

- simulation d'un capteur satellite (HYPXIM),
- identification d'essences,
- caractérisation de la biodiversité.

Mission spatiale HYPXIM

- haute résolution spatiale (prévue : 8 10 m),
- haute fréquence temporelle (prévue : 5 10 jours),
- haute résolution spectrale (prévue : 10 nm).

Hypothèses

- La performance de classification pixel est étroitement liée à l'échelle d'analyse fixée par la résolution spatiale (Woodcock and Strahler 1987; Marceau et al. 1994; Roberts et al. 2004) :
 - De la feuille à l'échelle intra-canopée : diminution de la qualité (par augmentation de la variance intra)
 - De l'échelle intra-canopée à l'objet : augmentation de la qualité (par diminution de la variance intra)
 - De l'objet à l'échelle du peuplement : diminution de la qualité (par diminution de la variance inter)

ヘロン 人間 とくほとく ほとう

Hypothèses

- La performance de classification pixel est étroitement liée à l'échelle d'analyse fixée par la résolution spatiale (Woodcock and Strahler 1987; Marceau et al. 1994; Roberts et al. 2004) :
 - De la feuille à l'échelle intra-canopée : diminution de la qualité (par augmentation de la variance intra)
 - De l'échelle intra-canopée à l'objet : augmentation de la qualité (par diminution de la variance intra)
 - De l'objet à l'échelle du peuplement : diminution de la qualité (par diminution de la variance inter)
- La résolution spatiale optimale est dépendante de l'essence considérée et de ses caractéristiques (taille de couronne...) (Marceau et al. 1994) :
 - Il n'existe pas de résolution spatiale optimale unique. Il faut plutôt rechercher le meilleur compromis entre les différentes essences.

< ロ > < 同 > < 三 > < 三 > .

Travaux antérieurs

Nombre limité d'études sur l'effet de la résolution spatiale pour discriminer les essences forestières (Fassnacht et al. 2016) :

- Résolution optimale à 0,3 m par rapport à 0,6 m, 1,2 m et 2,4 m avec une image hyperspectrale HySpex (Pena et al. 2013)
- Résolution optimale à **0,4 m par rapport à 1,5 m** avec une image hyperspectrale HySpex (Dalponte et al. 2013)
- Résolution optimale à **8 m par rapport à 4 m et 30 m** avec une image hyperspectrale HyMAP et une image Hyperion (Gosh et al. 2014)

Travaux antérieurs

Nombre limité d'études sur l'effet de la résolution spatiale pour discriminer les essences forestières (Fassnacht et al. 2016) :

- Résolution optimale à 0,3 m par rapport à 0,6 m, 1,2 m et 2,4 m avec une image hyperspectrale HySpex (Pena et al. 2013)
- Résolution optimale à **0,4 m par rapport à 1,5 m** avec une image hyperspectrale HySpex (Dalponte et al. 2013)
- Résolution optimale à **8 m par rapport à 4 m et 30 m** avec une image hyperspectrale HyMAP et une image Hyperion (Gosh et al. 2014)

Une résolution spatiale correspondant à l'échelle de l'objet semble être un bon compromis.

Objectif de l'étude

- Évaluer l'impact de la résolution spatiale pour l'identification d'essences forestières pour une résolution spectrale donnée :
 - ▶ 2 m,
 - ▶ 4 m,
 - ▶ 8 m (HYPXIM),
 - 10 m (Sentinel-2),
 - 12 m,
 - 15 m,
 - ▶ 30 m (EnMap, PRISMA).

Contexte et objectifs

Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Contexte et objectifs

2 Données

Zone d'étude

- Données de référence
- Images hyperspectrales

Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Zone d'étude : la forêt de Fabas

Répartition des espèces (source : ONF, 2001)

- Deux essences dominantes : le douglas et le chêne,
- Diversité des essences présentes \Longrightarrow zones très hétérogènes.

Zoom sur une zone hétérogène

T. Erudel et al.

< ロ > < 回 > < 回 > < 回 > < 回 > <

Zoom sur une zone hétérogène

(日)

Zoom sur une zone hétérogène

Contexte et objectifs

Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Données de référence

Données à disposition : relevés GPS effectués sur plusieurs périodes par DYNAFOR

Points initiaux relevés sur le terrain (n = 151).

<ロ><日><日><日><日<</td>

Données de référence

Données à disposition : relevés GPS effectués sur plusieurs périodes par DYNAFOR

Points initiaux relevés sur le terrain (n = 151).

Enrichissement des données à l'aide :

- de la BD Ortho (IGN) en vraies/fausses couleurs,
- d'une image Pléiades (hiver 2013),
- de plans simples de gestions (PSG).

• • • • • • • • • • • •

Données de référence

PSG (15/12/2014) Composition de chaque peuplement, enrichissement des relevés terrain

BDOrtho IRC 0,5m (2010) Localisation des individus, détail spatial

Pléiades MS 2m (10/12/2013) Séparation feuillus-conifères

MNH LiDAR 1m (2015) Position géométrique, détail spatial

Répartition des 543 points terrains retenus pour les classifications selon deux niveaux

Niveau 1	Nombre	Niveau 2	Nombre
Feuillus	188	Chêne Robinier	114 35
		Autres feuillus	39
Résineux	355	Douglas	119
		Pin laricio	100
		Pin maritime	77
		Pin weymouth	25
		Autres résineux	34

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Contexte et objectifs

Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Images hyperspectrales

Caractéristiques de l'instrument HySpex.

	VNIR	SWIR
Domaine spectral (nm)	400 - 1000	1000 – 2500
Rés. spatiale (m)	1	1
Rés. spectrale (nm)	3,6	6
N. bandes	160	256

・ロト ・四ト ・ヨト ・ヨト

Images hyperspectrales

Forêt de Fabas (rouge) et empreintes des lignes de vol par capteur (VNIR : noir; SWIR : bleu).

・ロト ・ 日 ・ ・ 目 ・ ・

Contexte et objectifs

2 Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

4 Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

< ロ > < 同 > < 三 > < 三

Contexte et objectifs

2) Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

Prétraitements

- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

A Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Prétraitements

Centrale inertielle (IMU)

Luminance (VNIR)

MNS (MUESLI)

BD Ortho. IGN

T. Erudel et al.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Prétraitements

T. Erudel et al.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Prétraitements

T. Erudel et al.

イロン イロン イヨン イヨン

Prétraitements

T. Erudel et al.

Prétraitements

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Prétraitements

Image hyperspectrale en luminance recalée

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Contexte et objectifs

2) Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

Prétraitements

Simulation des images hyperspectrales HYPXIM

Méthodologie des classifications

A Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Simulation des images hyperspectrales HYPXIM

<ロ> (日) (日) (日) (日) (日)

Simulation des images hyperspectrales HYPXIM

<ロ> (日) (日) (日) (日) (日)

Contexte et objectifs

2) Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Méthodologie des classifications

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Contexte et objectifs

2 Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

3 Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Contexte et objectifs

2 Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

3 Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Précision globale (%) et kappa obtenus pour différents classifieurs et différentes résolutions spatiales dans le cas TOC avion

Précision globale (%) et kappa obtenus pour différents classifieurs et différentes résolutions spatiales dans le cas TOA simulé

Précision globale (%) et kappa obtenus pour différents classifieurs et différentes résolutions spatiales dans le cas TOC simulé

Contexte et objectifs

2 Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

3 Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Précision globale (%) et kappa obtenus pour différents classifieurs et différentes résolutions spatiales dans le cas TOC avion

Précision globale (%) et kappa obtenus pour différents classifieurs et différentes résolutions spatiales dans le cas TOA simulé

Précision globale (%) et kappa obtenus pour différents classifieurs et différentes résolutions spatiales dans le cas TOC simulé

T. Erudel et al.

Impact de la résolution spatiale

Contexte et objectifs

2 Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

3 Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Exemple de carte (RLR appliquée à TOC simulé – 8 m)

ヘロン ヘロン ヘビン ヘビン

Exemple de carte (RLR appliquée à TOC simulé – 8 m)

ヘロン ヘロン ヘビン ヘビン

Comparaison visuelle avec le Plan Simple de Gestion

Futaie résineuse de Pin maritime

Comparaison visuelle avec le Plan Simple de Gestion

Futaie résineuse de Pin laricio avec réserve de Chêne

Comparaison visuelle avec le Plan Simple de Gestion

Ripisylve

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Comparaison visuelle avec le Plan Simple de Gestion

Futaie résineuse de Douglas/Epicéa avec réserve de Chêne

Comparaison visuelle avec le Plan Simple de Gestion

Futaie résineuse de Mélèze/résineux divers avec réserve de Chêne

Contexte et objectifs

2 Données

- Zone d'étude
- Données de référence
- Images hyperspectrales

Démarche méthodologique

- Prétraitements
- Simulation des images hyperspectrales HYPXIM
- Méthodologie des classifications

Résultats et discussion

- Niveau 1
- Niveau 2
- Carte et comparaison avec le PSG

5 Conclusions et perspectives

Conclusions et perspectives

- Importance des prétraitements,
- Points de référence difficiles à obtenir ightarrow auto-corrélation spatiale,
- Gamme spatiale optimale pour l'identification d'essences forestières : 10 15 m.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Conclusions et perspectives

- Importance des prétraitements,
- Points de référence difficiles à obtenir ightarrow auto-corrélation spatiale,
- Gamme spatiale optimale pour l'identification d'essences forestières : 10 15 m.

- Impact de la résolution spatiale en fonction de l'essence,
- Utilisation du SWIR pour la classification,
- Comparaison avec Sentinel-2,
- Combinaison LiDAR/hyperspectral,
- Classification orientée objet,
- Application à d'autres types de forêt (tropical : Gabon, Guyane française).

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Merci pour votre attention! thierry.erudel@inra.fr

・日・ ・ 日・ ・ 田・ ・