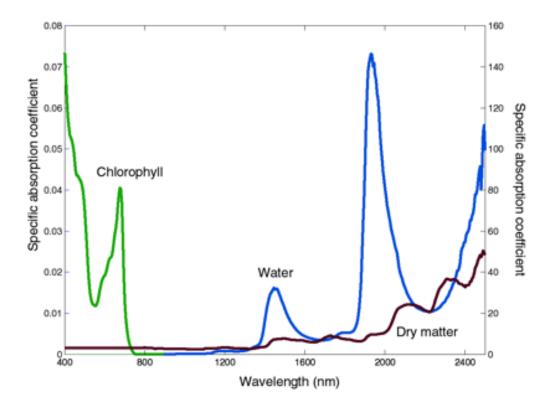


Estimation de la chimie foliaire par spectroscopie, apprentissage automatique et modélisation physique

Florian de Boissieu, Dino Ienco, Jean-Baptiste Féret



Contexte

- Deux traits foliaires d'intérêt sont spécifiquement étudiés ici:
 - Teneur en eau (Equivalent Water Thickness, EWT, mg/cm²)
 - Masse sèche (Leaf Mass per Area, LMA, mg/cm²)

Contexte

- Deux traits foliaires d'intérêt sont spécifiquement étudiés ici:
 - Teneur en eau (Equivalent Water Thickness, EWT, mg/cm²)
 - Masse sèche (Leaf Mass per Area, LMA, mg/cm²)
- Estimation de EWT et LMA a partir des propriétés optiques foliaires:
 - Inversion du modèle physique PROSPECT par optimisation itérative:
 - Bonnes performances pour EWT, variables pour LMA selon domaine spectral utilisé
 - Capacité de généralisation maximale
 - Temps de calcul important : passage à l'échelle compliquée en hyperspectral
 - Modèle statistique / apprentissage automatique:
 - Bonnes performances mais potentiellement surévaluées
 - Nécessite données d'apprentissage en quantité
 - Modèles peu généralisables (sites, protocole expérimental, matériel...)
 - Risque de sur-apprentissage

Objectifs et interrogations

- Déterminer une méthode hybride optimale:
 Apprentissage automatique sur modèle physique
 - Mise au point d'une base d'apprentissage simulée par PROSPECT
 - Détermination de l'algorithme d'apprentissage automatique approprié
 - Performances et capacité de généralisarion pour l'estimation de LMA et EWT
- Peux-ton améliorer les performances d'estimation avec ce type de modèle?
- Le choix de l'intervalle spectral et l'ajout d'un bruit gaussien aux propriétés optiques d'apprentissage permet-il d'améliorer les performances?

J.-B. Féret *et al.*, "Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling," *Remote Sens. Environ.*, vol. 115, no. 10, pp. 2742–2750, 2011.

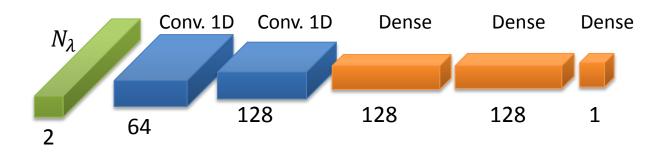
Matériels

- Données expérimentales:
 - ANGERS (308 échantillons) et LOPEX (320 échantillons)
 - $R(\lambda)$ et $T(\lambda)$ avec $\lambda \in [900, 2400]$ nm
- Simulations PROSPECT
 - 10⁴ combinaisons aléatoires de EWT, LMA et structure foliaire (N)

	EWT (g.cm ⁻²)	LMA (g.cm ⁻²)	N
Min	0	0	0.8
Max	60	40	3.8

- Simulation de $\hat{R}(\lambda)$ et $\hat{T}(\lambda)$ avec $\lambda \in [900, 2400]$ nm
- Bruit additif : $\epsilon(\lambda) \in N(0, \sigma)$ avec $\sigma = \{0, 0.5, 1, 2, 3, 4, 5\} 10^{-2}$

Méthodes 1/2

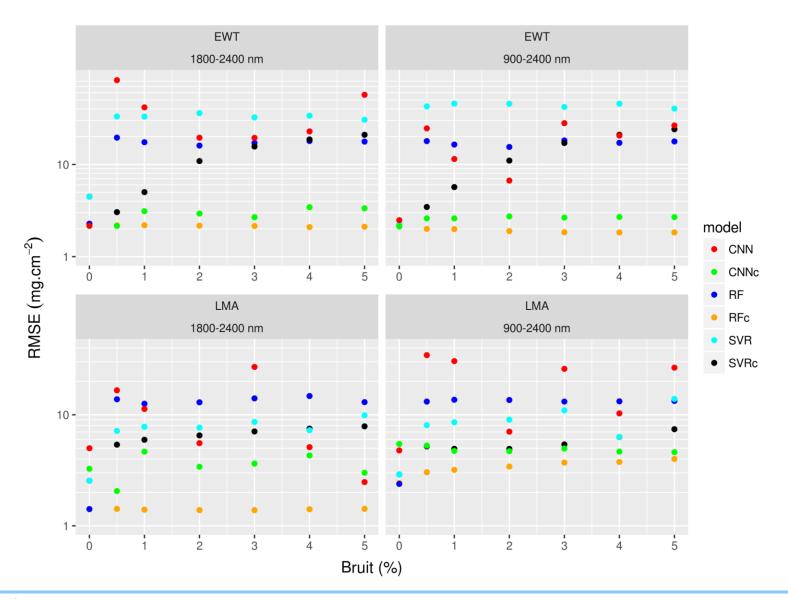

Inversion PROSPECT: Optimisation itérative avec contrainte (SQP)

$$\min_{N,EWT,LMA} f(N,EWT,LMA) = \sum_{\lambda=\lambda_1}^{\lambda_n} \left[\left(R_{\lambda} - \hat{R}_{\lambda} \right)^2 + \left(T_{\lambda} - \hat{T}_{\lambda} \right)^2 \right]$$

$$N \in [0.5, 5]; EWT \in [10^{-3}, 150] \text{ mg} \cdot \text{cm}^{-2}; LMA \in [10^{-3}, 40] \text{ mg} \cdot \text{cm}^{-2}$$

- Algorithmes de régression par apprentissage automatique:
 - ϵ -SVR: RBF, C=1, $\gamma=1/2N_{\lambda}$
 - RF: 400 arbres

• CNN1D:



Méthode 2/2

- Modèles par apprentissage automatique sur données expérimentales:
 - Algorithmes: SVR, RF
 - Apprentissage sur un site (cross-validation)
 - Test sur l'autre site
- Modèles hybrides:
 - Algorithmes: SVR, RF, CNN
 - Apprentissage sur données simulées
 - 1 distribution de bruit
 - Diversité de bruits (« c »: cumulé)
 - Test sur les données expérimentales
- λ : [900, 2400]nm et [1800, 2400]nm



Résultats : modèles hybrides

Résultats: meilleurs modèles

Conclusions & Perspectives

- Performances RF similaires au modèle physique
- Adaptation de la plage de λ améliore les performances pour LMA
- L'ajout de bruit gaussien aux données d'apprentissage simulées a peu d'effet sur les performances des modèles hybrides, contrairement aux modèles statistiques simples ajustes a partir d'indices spectraux

Work in progress ...

- Modèles hybrides encore améliorables
- A tester sur des images hyperspectrales
- Inversion PROSPECT sur GPU