Caractérisation des gaz basée sur un spectro-imageur interférométrique instantané (ImSPOC)

Aneline Dolet¹, Daniele Picone¹, Mauro Dalla Mura^{1,2}, Silvère Gousset³, Sylvain Douté³, Etienne Le Coarer³

 ¹ GIPSA-lab, Univ. Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
 ² Tokyo Tech World Research Hub Initiative (WRHI), School of Computing, Tokyo Institute of Technology, Tokyo, Japan
 ³ Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Grenoble, France

09/07/2019

<ロト (四) (三) (三) (三) (三)

Context

ImSPOC

Conférence SFPT-GH 2019

・ロト ・四ト ・ヨト ・ヨト

Context

2 prototypes

- ImSPOC-UV
 - Spectral range : UV et VIS
 - Applications :
 - $\bullet \ {\rm O}_4, \, {\rm O}_3, \, {\rm O}_2, \, {\rm NO}_2$

		1	1	1	1	1	1	7	1	

- Nanocarb
 - Spectral range : near IR
 - Applications :
 - CO_2

-					
-					
-					
-					
-					

・ロン ・日ン ・ヨン・

Outline

1 Introduction

2 ImSPOC sensor calibration

- Objective and problems
- Considered solutions
- Dataset for validation

3 From interferograms to spectra

- Objective and problems
- Considered solutions

4 Gaz detection/quantification

• Objectives and considered tests

5 Conclusion and perspectives

・ロト ・日下 ・ヨア

2 ImSPOC sensor calibration

- Objective and problems
- Considered solutions
- Dataset for validation

3 From interferograms to spectra

- Objective and problems
- Considered solutions

Gaz detection/quantificationObjectives and considered tests

• Objectives and considered tests

5 Conclusion and perspectives

・ロト ・日ト・ ・日ト

• 3 steps

• Objectives

- Calibration : optimal matching between the thumbnails
- Spectrum reconstruction : interferogram inversion
- Concentration estimation :
 - Gaz detection
 - Concentration quantification

イロト イヨト イヨト イヨ

2 ImSPOC sensor calibration

- Objective and problems
- Considered solutions
- Dataset for validation

3 From interferograms to spectra

- Objective and problems
- Considered solutions

Gaz detection/quantificationObjectives and considered tests

5 Conclusion and perspectives

・ロト ・日下 ・ヨト

Objective and problems

Objective: optimal matching of the thumbnails

・ロト ・回ト ・ヨト

Spatially

- Thumbnail cutting
- Subpixel shifts
- Distorsion

Spectrally

• Non linearity

Thumbnail cutting

- Edge detection
- Subpixel shifts
 - Discrete Fourier transforms [Guizar-Sicairos et al., OPTICS LETTERS, 2008]

Distorsion

• To study

Interferogram non linearity

• Measured OPD to take into account

Subpixel shifts

- Discrete Fourier transforms [Guizar-Sicairos et al., OPTICS LETTERS, 2008]
 - Based on crosscorrelation
 - 2*2 images registration

・ロト ・回ト ・ヨト

- Simulation
- ONERA and/or IPAG acquisition

・ロト ・日下 ・ヨン

2 ImSPOC sensor calibration

- Objective and problems
- Considered solutions
- Dataset for validation

3 From interferograms to spectra

- Objective and problems
- Considered solutions

Gaz detection/quantificationObjectives and considered tests

5 Conclusion and perspectives

・ロト ・回ト ・ヨト

Objective and problems

Objective: reconstruct the spectrum of each pixel from its interferogram

- Theory: Fourier transform
- Non linearity
- Small OPD missing

A D >
 A D >
 A

Model construction for inversion

• Sensor fabrication induces some not known phenomena

Interferogram understanding

- Combined acquisitions
 - $\bullet~{\rm ImSPOC}\mbox{-}{\rm UV}$ and dispersive spectrometer
 - Following the sun during a day

2 ImSPOC sensor calibration

- Objective and problems
- Considered solutions
- Dataset for validation

3 From interferograms to spectra

- Objective and problems
- Considered solutions

Gaz detection/quantificationObjectives and considered tests

5 Conclusion and perspectives

・ロト ・回ト ・ヨト

Objectives

- Detection of specific gaz
- Quantification of specific gaz (abundance)

Open question: do the reconstructed spectra allows the use of classical unmixing algorithms ?

Considered tests

- Differential Optical Absorption Spectroscopy [Platt et al., PESE, 2008]
- Vertex Component Analysis [Nascimento et al., IEEE TGRS, 2004], Group Lasso with Unit sum and Positivity constraints [Ammanouil et al., IEEE TIP, 2014], N-FINDR [Winter et al., Proc. SPIE, 1999], etc.
- Fully Constrained Least-Square [Heinz et al., IEEE TGRS, 2001]

2 ImSPOC sensor calibration

- Objective and problems
- Considered solutions
- Dataset for validation

3 From interferograms to spectra

- Objective and problems
- Considered solutions

Gaz detection/quantification Objectives and considered tests

5 Conclusion and perspectives

・ロト ・日下・・日下

Conclusion and perspectives

- Many challenges
- Simulations and acquisitions with ground truth
 - Grid, points, ...

- Combined acquisitions with another system for comparison
 - Dispersive spectrometer

Two principal points to solve:

- Spatial calibration (subpixel shifts and distorsion)
- From interferogram to spectrum

The end!

・ロト ・日ト ・ヨト

Thank you !

э

Conférence SFPT-GH 2019

Acquisition model

- An incident ray $I_{in}(\theta_{ij}, \sigma)$ is characterized in the two domains:
 - Spectral: As a function of the wavenumber σ (inverse of the wavelength); a leading optical system limits its range in the interval $[\sigma_{min}, \sigma_{max}]$
 - Spatial: As a function of its incidence angle θ_{ij} ; strictly, that is defined as the solid angle range of the rays that, after collimation, excites the photo-detector on the focal plane in the position (i, j). Each sub-image, excluding disalignments, has the same behaviour for ray collimation.

・ロト ・日下・ ・ヨト・

• By ignoring all effects, apart the transmittance T_k of the interferometer itself, the detected light intensity I_k for the k-th sub-image can be expressed as:

$$I_k(i,j) = \int_{\sigma_{min}}^{\sigma_{max}} I_{in}(\theta_{ij},\sigma) T_k(i,j,\sigma) d\sigma$$

- The trasmittance may be expressed with different models:
 - Two-rays model: $T_k(i, j, \sigma) = 1 + R^2(1-R)^2 \exp(2\pi\sigma\delta_k)$ All-rays model: $T_k(i, j, \sigma) = \frac{1}{1 + \frac{4R}{1+R} \sin^2(2\pi\sigma\delta_k)}$

where:

- $R(\sigma)$ is the internal surface reflectivity
- $\delta_k(i,j) = 2nL_k \cos(\theta_{ij})$ is the OPD between the directly transmitted ray and the one transmitted after a double reflection
- L_k is the width of the k-th interferometer
- *n* is the refraction index inside the interferometer

イロト イヨト イヨト イヨト

Inversion

- The inverse model target is to find an estimation of $I_i n(\theta_{ij}, \sigma)$ from the collected acquisitions $I_k(i, j)$
- Two-rays model:
 - The transfer function is in the form:
 - $I_k(i,j) = \int_{\sigma_{min}}^{\sigma_{max}} I_{in}(\theta_{ij},\sigma)(1+\alpha\exp(2\pi\sigma\delta_k))d\sigma$, which, if associable to a cosine Fourier transform from the domain of the wavenumbers σ to the ones of the OPDs δ
 - Ideally, the spectrum could be simply reconstructed by an inverse Fourier transform
- Problem linearization: The direct transfer function is modeled as a linear transformation.
 - Variational framework: Its target is to minimize a specific cost function, composed by a data fidelity term and a regularizer.
 - T-SVD: The matrix of linear transformation is decomposed through SVD and low-amplitude eigenvalues contributions are ignored before its inversion..

(ロ) (日) (日) (日) (日)