

DART: Improvement of Thermal Infrared Radiative Transfer Modelling

for simulating top of atmosphere radiance

Yingjie WANG¹, Jean-Philippe GASTELLU-ETCHEGORRY¹

¹Centre d'Etudes Spatiales de la BIOsphère (CESBIO), CNES, CNRS, IRD, UPS, 18 Av. E.Belin, 31401 Toulouse, France

- Context: why 3D RT modelling ?
- > DART model and its initial accuracy
- > Improvements of TIR RT modelling
- Results and consistency tests
- Conclusion

Context

Satellite sensor TIR spectral bands and sensitivity

Satellite	Launch date	Organization	Center wavelength	Bandwidth	Sensitivity (NeDT)
Trishna	foreseen	CNES+ISRO	8.6 µm	0.35 µm	0.3 K@300 K
	2024-2025		9.1 µm	0.35 µm	0.3 K@300 K
			10.3 µm	1.0 µm	0.3 K@300 K
			11.5 μm	1.0 µm	0.3 K@300 K
Landsat 9	foreseen 2020	NASA	10.9 μm	0.6 µm	0.4 K@300 K
			12.0 µm	1.0 µm	0.4 K@300 K
Sentinel 3	2016	ESA	8.8 µm	0.6 µm	0.25 K@293 K
			10.8 µm	0.6 µm	0.25 K@293 K
			12.0 µm	0.6 µm	0.25 K@293 K

Irons et al., 2012, Donlon et al., 2012, Lagouarde et al., 2018, McCorkel et al, 2018

Accuracy requirement for LST applications:

accuracy < 1 K

Sobrino et al., 2016

Context

Difficulties to interpret RS data

- Instrumental configuration: spectral resolution, viewing direction, sensor FOV,
- Experimental configuration: topography, surface / atmosphere conditions,...

3D RT Modelling

Solar radiation

Atmosphere thermal emission

Atmosphere scattering

Direct+Diffuse radiation

Landscape thermal emission

Landscape emission + scattering

Earth-Atmosphre radiative coupling

> Context: why 3D RT modelling ?

DART model and its initial accuracy

> Improvements of TIR RT modelling

- > Results and consistency tests
- > Conclusion

DART model

History:

Developed since 1992 by 7-10 physicists / computer scientists. Patented in 2003.

License:

Free for research & education (<u>http://www.cesbio.ups-tlse.fr/dart/license/</u>)

DART GUI (Graphical User Interface) and licence distribution

Users: 399 licenses

NASA, USA: LiDAR, Fluo, RB ESA, EU: Fire, Hyperspectral CENSAM-MIT: RB KCL, GB: Fire, FORTH, Gr: Urban CNES, Fr: LiDAR ONERA, Fr: Hyperspectral Magellium, Fr: water IRSTEA, Fr: LiDAR, Hyper.

DART is a patented software. It has been developed by CESBIO since 1993. It belongs to Paul Sabatier University (France). Its use requires a licence. This is free for public education and research.

DART model

Representation of 3D scene elements

- Turbid medium: vegetation
- Triangles / facets: vegetation, buildings, DEM,...
- Fluids: air, smoke, water.

Results for any:

- Spectral band ([0.25 μm 100 μm])
- Viewing direction
- Spatial resolution,...

Different types of products:

- BOA/TOA image, polarisation: satellite, UAV,...
- Lidar
- Fluorescence
- Radiative budget
- LUT for inversion and sensitivity studies (LAI,...)

Gastellu-Etchegorry et al., 2017

DART atmosphere RT modelling

Atmosphere Geometry **Layer Properties Thermal Emission**

User defined geometry:

- atmosphere altitude
- layer thickness: $\Delta z_l = z_{l+1} z_l$
- \Rightarrow *L* atmosphere layers

Constant layer properties per layer $l \in [1, L]$:

- Temperature T_l
- Extinction coefficient $\alpha_{l,i}(\lambda)$ per gas *i* per band λ

$$\alpha_{l,i}(\lambda) = \frac{-\log(T_{atm,i,\lambda})}{z_{l+1} - z_l} \cdot \frac{\int_{z_l}^{z_{l+1}} \sigma_{a,i}(\lambda) \cdot N_i(z).\,dz}{\int_0^\infty \sigma_{a,i}(\lambda) \cdot N_i(z).\,dz}$$

normalized $\alpha_{l,i}(\lambda) \Rightarrow T_{atm,DART} = T_{atm,MODTRAN} \ \forall \lambda, i$

Beer's law:

 \Rightarrow transmittance $T_{atm}(\Omega) \approx e^{-\Delta \tau(\Omega)}$

Thermal radiative energy (*W*) along direction $(\Omega, \Delta \Omega)$: $W(\Omega, \lambda) = L_B(T_l, \lambda) \cdot \left[1 - e^{-\frac{\alpha_l(\lambda) \cdot \Delta z_l}{\mu}}\right] \cdot \mu \cdot \Delta S \cdot \Delta \Omega$ $\omega(z, \lambda) \approx 0$

DART accuracy in TIR region

Landscape TIR RT modelling

ESA projects \Rightarrow accurate 3D landscape thermal emission and scattering modelling

DART recent improvements: Embree library, parallel computation, memory demand

Atmosphere RT modelling in TIR region (i.e. [3.5 μ m 20 μ m])

Gas Model	ТОА	BOA
USSTD76	3.1 K	2.1 K
TROPICAL	4.7 K	1.7 K
MIDLATSUM	3.8 K	1.6 K
MIDLATWIN	2.3 K	1.5 K
SUMARCSUM	2.9 K	1.7 K
SUMARCWIN	1.8 K	1.2 K
AVERAGE	3.1 K	1.6 K

Mean Absolute Error (MAE) of TOA & BOA BT: DART vs. MODTRAN5 (1 cm⁻¹)

MODTRAN5 accuracy: thermal BT < 1 K (*Berk et al, 2008*)

Accurate TOA radiance ⇒ atmosphere TIR RT modelling improvement ⇒ atmosphere thermal BT MAE < 1 K

DART accuracy in TIR regio

Atmosphere TIR RT modelling in initial DART:

- Independence of gas absorption cross-section $\sigma_{a,i}(\lambda)$ on T(z) and P(z)
- Unique temperature T_l and extinction coefficient $\alpha_{l,i}(\lambda)$ per atmosphere layer l
- Use of Beer's law to simulate radiation transmission in spectral bands

- > Context: why 3D RT modelling ?
- > DART model and its initial accuracy
- Improvements of TIR RT modelling
- > Results and consistency tests
- > Conclusion

Improvements of TIR RT modelling

Introduction of "Equivalent absorption cross-section":

$$T_{i,z,\lambda,\Delta L} = \exp(-\sigma_{a,i,\Delta L}(z,\lambda) \cdot N_i(z) \cdot \Delta L) \Rightarrow \sigma_{a,i,\Delta L}(z,\lambda) = \frac{-\log(T_{i,z,\lambda,\Delta L})}{N_i(z) * \Delta L}$$

 $\sigma_{a,i}(z, \lambda)$ is derived from MODTRAN5 simulations:

- 5 most absorbing gases $i = H_2O$, CO_2 , O_3 , CH_4 , N_2O (gas density $N_i(z)$)
- transmittance $T_{i,z,\lambda,\Delta L}$ along equal-paths $\Delta L = 6$ km at 36 altitudes z.

Vertical profile of rescaled $\sigma_{a,i,\Delta L}(z,\lambda)$ for 5 most absorbing gases. USSTD76 gas model.

$\mathbf{M}_{a} = \begin{cases} \mathbf{M}_{a} = \begin{bmatrix} -\log(T_{atm,i,\lambda}) \\ Z_{l+1} - Z_{l} \end{bmatrix} \cdot \begin{bmatrix} \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l}} \\ \frac{-\log(T_{atm,i,\lambda})}{Z_{l+1} - Z_{l}} \end{bmatrix} \cdot \begin{bmatrix} \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l}} \\ \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l+1} - Z_{l}} \end{bmatrix} \cdot \begin{bmatrix} \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l}} \\ \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l}} \\ \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l}} \end{bmatrix} \cdot \begin{bmatrix} \frac{\zeta_{l+1}^{Z_{l+1}} \sigma_{a,i}(\lambda) \cdot N_{i}(z) \cdot dz}{\zeta_{l}} \\ \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l}} \\ \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l}} \end{bmatrix} \cdot \begin{bmatrix} \frac{\zeta_{l+1}^{Z_{l+1}} \sigma_{a,i}(\lambda) \cdot N_{i}(z) \cdot dz}{\zeta_{l}} \\ \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l}} \end{bmatrix} \cdot \begin{bmatrix} \frac{\zeta_{l+1}^{Z_{l+1}} \sigma_{a,i}(\lambda) \cdot N_{i}(z) \cdot dz}{\zeta_{l}} \\ \frac{-\log(T_{atm,i,\lambda})}{\zeta_{l}} \end{bmatrix} \cdot \begin{bmatrix} \frac{\zeta_{l+1}^{Z_{l+1}} \sigma_{a,i}(\lambda) \cdot N_{i}(z) \cdot dz}{\zeta_{l}} \\ \frac{\zeta_{l+1}^{Z_{l+1}} \sigma_{a,i}(\lambda) \cdot N_{i}(z) \cdot dz}{\zeta_{l}} \end{bmatrix}$

DART initial and corrected absorption extinction coefficients profiles. USSTD76 gas model

Improvements of TIR RT modelling

Design of continuous T(z) and $\alpha(z, \lambda)$ within and between atmosphere layers

$$\alpha(h,\lambda) = -3A_l(\lambda) \cdot h^2 - 2B_l(\lambda) \cdot h + C_l(\lambda)$$

 $T(h) = K_{1l} \cdot h + K_{2l}$

h = relative altitude in each atmosphere layer l; A_l , B_l , C_l , K_l = constants per layer l.

Each atmosphere layer l is divided into m_l sub-layers.

Improvements of TIR RT modelling

Numerical integration in order to compute layer thermal emission.

Four conditions to verify:

a. Constant temperature $T_m = T_{m-1}$

$$(1) L_{m}^{\uparrow}(\Omega, \Delta \Omega) = L_{B}(T_{m}, \lambda) \cdot \begin{bmatrix} 1 - e^{-\frac{\Delta \tau_{m}}{\mu}} \end{bmatrix} \qquad (3) L_{m}^{\uparrow}(\Omega, \Delta \Omega) = L_{B}(T_{m}, \lambda)$$

$$T_{m} \qquad \qquad T_{m}$$

$$(\Omega, \Delta \Omega) \qquad T_{m-1}$$

$$(2) L_{m}^{\downarrow}(\Omega, \Delta \Omega) = L_{B}(T_{m}, \lambda) \cdot \begin{bmatrix} 1 - e^{-\frac{\Delta \tau_{m}}{\mu}} \end{bmatrix} \qquad (4) L_{m}^{\downarrow}(\Omega, \Delta \Omega) = L_{B}(T_{m-1}, \lambda)$$

b. Infinite $\Delta \tau_m$:

 \Rightarrow Final expression:

$$W_l^{\uparrow}(\Omega, \Delta \Omega) = \sum_{m=1}^{m_l} \left[L_B(T_{m-1}, \lambda) \cdot e^{-\frac{\Delta \tau_m}{2\mu}} + L_B(T_m, \lambda) \right] \cdot \left[1 - e^{-\frac{\Delta \tau_m}{2\mu}} \right] \cdot e^{-\frac{\tau_m}{\mu}} \cdot \mu \cdot \Delta S \cdot \Delta \Omega$$
$$W_l^{\downarrow}(\Omega, \Delta \Omega) = \sum_{m=1}^{m_l} \left[L_B(T_{m-1}, \lambda) + L_B(T_m, \lambda) \cdot e^{-\frac{\Delta \tau_m}{2\mu}} \right] \cdot \left[1 - e^{-\frac{\Delta \tau_m}{2\mu}} \right] \cdot e^{-\frac{(\tau_{l-1} - \tau_{m-1})}{\mu}} \cdot \mu \cdot \Delta S \cdot \Delta \Omega$$

- > Context: why 3D RT modelling ?
- > DART model and its initial accuracy
- > Improvements of TIR RT modelling
- Results and consistency tests
- Conclusion

Results

Mean Absolute Error (MAE) of TOA & BOA BT: DART vs. MODTRAN5. In [3.5 μm, 20 μm] region.

Gas Model	Initial TOA	Improved TOA	Initial BOA	Improved BOA
USSTD76	3.1 K	0.70 K	2.1 K	0.85 K
TROPICAL	4.7 K	1.02 K	1.7 K	0.59 K
MIDLATSUM	3.8 K	0.91 K	1.6 K	0.59 K
MIDLATWIN	2.3 K	0.60 K	1.5 K	0.70 K
SUMARCSUM	2.9 K	0.75 K	1.7 K	0.68 K
SUMARCWIN	1.8 K	0.48 K	1.2 K	0.60 K
AVERAGE	3.1 K	→ 0.74 K	1.6 K	→ 0.67 K

Atmosphere thermal BT MAE < 1 K !

Results

TOA BT difference (DIFF): DART vs. MODTRAN5. USSTD76 gas model.

Satellite	Center wavelength	Bandwidth	Sensitivity (NeDT)	Initial	Improved
Trishna	8.6 µm	0.35 µm	0.3 K @300 K	0.65 K	0.179 K
	9.1 μm	0.35 µm	0.3 K @300 K	1.56 K	0.079 K
	10.3 µm	1.0 µm	0.3 K @300 K	2.60 K	0.233 K
	11.5 μm	1.0 µm	0.3 K @300 K	1.49 K	0.032 K
Landsat 9	10.9 µm	0.6 µm	0.4 K @300 K	1.95 K	0.002 K
	12.0 µm	1.0 µm	0.4 K @300 K	1.71 K	0.055 K
Sentinel 3	8.8 µm	0.6 µm	0.25 K @293 K	0.46 K	0.210 K
	10.8 µm	0.6 µm	0.25 K @293 K	2.09 K	0.008 K
	12.0 µm	0.6 µm	0.25 K @293 K	1.65 K	0.019 K

Results

Consistency test

Measurements:

thermal emission spectra of Sahara and Mediterranean region from IRIS-D on Nimbus 4. Spectral resolution 2.8 cm⁻¹ Hanel et al. 1971

DART simulation configurations:

Sahara region:

Gas = TROPICAL + \downarrow 50% H₂O Aerosol = DESERT_V76km CO₂ ratio = 340 ppm ρ_{ground} = yellowish loamy sand T_{surface} = 325 K

Mediterranean sea region:

Gas	=	USSTD76 + \uparrow 50% H ₂ O
Aerosol	=	MARITIME_V23km
CO_2 ratio	=	380 ppm
$ ho_{sea}$	=	0.0
T _{sea}	=	285 K

TOA TIR radiance : DART vs. Nimbus 4

- > Context: why 3D RT modelling ?
- > DART model and its initial accuracy
- > Improvements of TIR RT modelling
- > Results and consistency tests
- Conclusion

Conclusion

Conclusion:

DART TIR RT modelling accuracy is greatly improved with the introduction of:

- equivalent absorption cross-section
- continuous $T_l(z)$ and $\alpha_{l,i}(z,\lambda)$ per atmosphere layer l
- \Rightarrow DART TIR BT MAEs are reduced: from 3.1 K to 0.74 K at TOA - from 1.6 K to 0.67 K at BOA
- \Rightarrow Improvements are much larger in TIR absorption regions.
- \Rightarrow DART TOA radiance accuracy reaches LST accuracy requirement

Perspective:

Improvement of radiative coupling of atmosphere over sloping terrain.

Thanks

